GCP Blog Connect with us GCP on Facebook Follow GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to our RSS feeds

Journal articles 2012

Documents

Order by : Name | Date | Hits | [ Descendent ]

Approaches towards nitrogen- and phosphorus-efficient rice Approaches towards nitrogen- and phosphorus-efficient rice

Vinod KK, Heuer S (2012). Approaches towards nitrogen- and phosphorus-efficient rice. AoB PLANTS 2012: pls028; (DOI:10.1093/aobpla/pls028).

For thedevelopment of nutrient-efficient rice,a holistic approach should be followed combining optimized fertilizer management with enhanced nutrient uptake via a vigorous root system, leading to increased grain filling and yield. Despite an increasing number of N- and P-related genes and QTLs being reported, very feware actively used inmolecular breeding programmes. The complex regulation of N- and P-related pathways challenges breeders and the research community to identify large-effect genes/QTLs. For this it will be important to focus more on the analysis of tolerant genotypes rather than model plants, since tolerance pathways may employ a different set of genes.

icon Full article (360.58 kB)

hot!

High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development

Clark RT, Famoso AN,  Zhao K, Shaff JE, Craft JE, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV. 2013. High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environment Published online 3 September 2012. (DOI: 10.1111/j.1365-3040.2012.02587.x). Also printed in 2013. (G7010.03.01). Not open access: view abstract

hot!

Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux

Ligaba A, Maron LG, Shaff JE, Kochian LV, Piñeros MA (2012). Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant, Cell & Environment 35(7):1185–1200. (DOI: 10.1111/j.1365-3040.2011.02479.x). Not open access: view abstract

hot!

A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminium resistance and improved carbon-use efficiency for aluminium resistance A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminium resistance and improved carbon-use efficiency for aluminium resistance

Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhães J and Kochian LV (2012). A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminium resistance and improved carbon-use efficiency for aluminium resistance. The Plant Journal 71(2):327–337. (DOI: 10.1111/j.1365-313X.2012.04994.x).

The primary mechanism of Arabidopsis aluminum (Al) resistance is based on root Al exclusion, resulting from Al-activated root exudation of the Al3+-chelating organic acids, malate and citrate. Root malate exudation is the major contributor to Arabidopsis Al resistance, and is conferred by expression of AtALMT1, which encodes the root malate transporter. Root citrate exudation plays a smaller but still significant role in Arabidopsis Al resistance, and is conferred by expression of AtMATE, which encodes the root citrate transporter. In this study, we demonstrate that levels of Al-activated root organic acid exudation are closely correlated with expression of the organic acid transporter genes AtALMT1 and AtMATE.

icon Full article (561.83 kB)

hot!

Markers for quantitative inheritance of resistance to foliar thrips in cowpea Markers for quantitative inheritance of resistance to foliar thrips in cowpea

Lucas MR, Ehlers JD, Roberts PA, Close TJ (2012). Markers for quantitative inheritance of resistance to foliar thrips in cowpea. Crop Science 52(5):2075–2081. (DOI:10.2135/cropsci2011.12.0684). (G6010.02/G7010.07.01). Not open access: view abstract

hot!

Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut

Macedo SE, Moretzsohn MC, Leal-Bertioli SC, Alves DM, Gouvea EG, Azevedo VC, Bertioli DJ (2012). Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Research Notes 5:86 10pp. (DOI:10.1186/1756-0500-5-86). (G6010.01)

hot!

Genetic and molecular mechanisms of aluminum tolerance in plants Genetic and molecular mechanisms of aluminum tolerance in plants

Simões CC; Melo JO; Magalhaes JV; Guimarães CT (2012). Genetic and molecular mechanisms of aluminum tolerance in plants. Genetics and Molecular Research 11 (3):1949–1957. (DOI: 10.4238/2012.July.19.14). http://geneticsmr.com/articles/1770. (G7010.03.02).

Genes encoding membrane transporters and accessory transcription factors, as well as cis-elements that enhance gene expression are involved in Al tolerance in plants, thus studies of these genes and accessory factors should be the focus of molecular breeding efforts aimed at improving Al tolerance in crops. In this review, we describe the main genetic and molecular studies that led to the identification and cloning of genes associated with Al tolerance in plants. We include recent findings on the regulation of genes associated with Al tolerance. Understanding the genetic, molecular, and physiological aspects of Al tolerance in plants is important for generating cultivars adapted to acid soils, thereby contributing to food security worldwide.

hot!

Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64 Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64

Sharoni AM, Nuruzzaman M, Satoh K, Moumeni A, Attia K, Venuprasad R, Serraj R, Kumar A, Leung H, RaWul Islam AKM, Kikuchi S (2012). Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Molecular Genetics and Genomics 287(1):1–19. (DOI: 10.1007/s00438-011-0659-3).

hot!

An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L) Millspaugh] derived from six mapping population An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L) Millspaugh] derived from six mapping population

Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A, KaviKishor PB, Cook DR, Varshney RK (2012). An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L) Millspaugh] derived from six mapping populations. Theoretical and Applied Genetics 125(6):1325–1338. (DOI: 10.1007/s00122-012-1916-5).

Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59–140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed.

icon Full article (1.24 MB)

hot!

Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross.

Blair MW, Galeano CH, Tovar E, Muñoz Torres MC, Velasco Castrillón A, Beebe SE, Rao IM (2012). Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Molecular Breeding 29(1):71–88 (DOI 10.1007/s11032-010-9527-9). Also published online in 2010.

hot!