Details for Phosphorous efficiency and tolerance traits for selection of sorghum for performance in phosphorous-limited environments

Phosphorous efficiency and tolerance traits for selection of sorghum for performance in phosphorous-limited environments
PropertyValue
Name:Phosphorous efficiency and tolerance traits for selection of sorghum for performance in phosphorous-limited environments
Description:

Leiser WL, Rattunde HFW, Piepho H-P, Weltzien E, Diallo A, Toure A and Hausmann BIG (2015). Phosphorous efficiency and tolerance traits for selection of sorghum for performance in phosphorous-limited environments. Crop Science 55 Published online: 27 March 2015 (DOI: 10.2135/cropsci2014.05.0392). (G7010.03.03)

Abstract: Sorghum (Sorghum bicolor (L.) Moench) is widely cultivated in West Africa (WA) on soils with low phosphorus (P) availability. Large genetic variation for grain yield (GY) under low-P conditions was observed among WA sorghum genotypes, but information is lacking on the usefulness of P-tolerance ratios (relative performance in –P [no P fertilizer] vs. +P [with P fertilizer] conditions) and measures of P-acquisition and internal P-use efficiency as selection criteria for enhancing GY under low-P conditions. We evaluated 70 WA sorghum genotypes for GY performance under −P and +P conditions for 5 yr in two locations in Mali and assessed P acquisition (e.g., P content in biomass) and P-use efficiency (e.g., grain produced per unit P uptake) traits under −P and +P conditions in one site in 2010. Significant genetic variation existed for all P-tolerance ratios across multiple sites. Photoperiod-sensitive landrace genotypes showed significantly better P tolerance and less delay of heading under P-limited conditions compared with photoperiod-insensitive varieties. Genotypic correlations of P-tolerance ratios to GY under −P were moderate. Phosphorous acquisition and P-use efficiency traits independent of harvest index were of similar importance for GY under −P conditions in statistically independent trials. However grain-P and stover-P concentrations from one −P trial showed only weak correlations with GYs in statistically independent trials. Highest predicted gains for −P GY were obtained by theoretical index selection based on −P GY combined with P-use efficiency traits (e.g., low-grain P concentration). Such index selection is expected to achieve both increased sorghum productivity and P sustainability in the P-limited WA production systems.

icon Full article

Filename:Leiser_Phosphorus-efficiency_Crop-Sci.pdf
Filesize: 735.92 kB
Filetype:pdf (Mime Type: application/pdf)
Last updated on: 04/17/2015 20:15