AJB PRIMER NOTES & PROTOCOLS IN THE PLANT SCIENCES

A REFERENCE MICROSATELLITE KIT TO ASSESS FOR GENETIC DIVERSITY OF SORGHUM BICOLOR (POACEAE)¹

CLAIRE BILLOT^{2,6,7}, RONAN RIVALLAN^{2,7}, MBAYE NDOYE SALL^{3,7}, DANIEL FONCEKA², MONIQUE DEU², JEAN-CHRISTOPHE GLASZMANN², JEAN-LOUIS NOYER², JEAN-FRANÇOIS RAMI², ANGE-MARIE RISTERUCCI², PATRICK WINCKER⁴, PUNA RAMU⁵, AND CHARLES T. HASH⁵

²CIRAD, UMR AGAP, F-34398 Montpellier, France; ³CERAAS, Thies Escale, BP 3320, Thies, Senegal; ⁴Genoscope, 2 rue Gaston, Cremieux 91057 Evry, France; and ⁵International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, Andhra Pradesh, India

- *Premise of the study:* Discrepancies in terms of genotyping data are frequently observed when comparing simple sequence repeat (SSR) data sets across genotyping technologies and laboratories. This technical concern introduces biases that hamper any synthetic studies or comparison of genetic diversity between collections. To prevent this for *Sorghum bicolor*, we developed a control kit of 48 SSR markers.
- *Methods and Results:* One hundred seventeen markers were selected along the genome to provide coverage across the length of all 10 sorghum linkage groups. They were tested for polymorphism and reproducibility across two laboratories (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement [CIRAD], France, and International Crops Research Institute for the Semi-Arid Tropics [ICRISAT], India) using two commonly used genotyping technologies (poly-acrylamide gel–based technology with LI-COR sequencing machines and capillary systems with ABI sequencing apparatus) with DNA samples from a diverse set of 48 *S. bicolor* accessions.
- *Conclusions:* A kit for diversity analysis (http://sat.cirad.fr/sat/sorghum_SSR_kit/) was developed. It contains information on 48 technically robust sorghum microsatellite markers and 10 DNA controls. It can further be used to calibrate sorghum SSR genotyping data acquired with different technologies and compare those to genetic diversity references.

Key words: diversity kit; Poaceae; Sorghum bicolor; standardization; simple sequence repeat markers.

Combining simple sequence repeat (SSR) molecular data obtained from different laboratories or different genotyping platforms is often a challenge, especially for large-scale analyses and for highly polymorphic markers (for example, George et al., 2004). Although work can be partitioned with markers assigned only to one platform in one laboratory, this is rarely the case. Thus, one way to avoid troubles in merging data sets, and provide standardization, is to use similar controls as allelic references.

Sorghum (Sorghum bicolor (L.) Moench) is a major staple crop in semiarid environments, traditionally used for forage and food consumption. Five major races (bicolor, caudatum, durra, guinea, and kafir) and 10 intermediates were determined using panicle and spikelet morphologies and were confirmed by

¹Manuscript received 17 November 2011; revision accepted 6 April 2012.

New SSR development was performed as part of a 2000 Genoscope National Sequencing Project. Kit identification was performed in association with the Generation Challenge Program (GCP; Project 2005-01—Genotyping of a Sorghum Composite Collection). M.N.S. and D.F. were supported by a grant of the GCP under the GCP Subprogram 5. All kit-characterizing experiments were performed on the Montpellier Languedoc-Roussillon Genotyping platform (GPTR, http://www.gptr-lr-genotypage. com/), Montpellier, France.

⁶Author for correspondence: claire.billot@cirad.fr

⁷These authors contributed equally to the work.

doi:10.3732/ajb.1100548

genetic markers (Deu et al., 2006). This crop is gaining attention in a context of climatic changes for its adaptation to water scarcity and its uses as biofuel. It is a reference for C₄ metabolism plants because the sequencing of its genome is now available (Paterson et al., 2009; http://genome.jgi-psf.org/Sorbi1/ Sorbi1.info.html). Although directly sequence-derived markers may be routinely used, multiallelic markers such as SSR will continue to be a reference, especially for small-scale diversity studies. We present here a work on designing a robust technical reference SSR kit for sorghum from previously published and unpublished SSR markers to be used to combine information from different studies.

METHODS AND RESULTS

Forty-eight sorghum accessions (Appendix 1) were selected among a core collection of cultivated sorghum (Deu et al., 2006) to represent all races and geographic origins. DNA extraction from a single representative plant was carried out at the Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD; France) following Deu et al. (2006). An aliquot quantity of DNA samples was sent to the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT; India) for SSR genotyping.

One hundred seventeen SSR markers (http://sat.cirad.fr/sat/sorghum_SSR_ kit/) were selected among published markers (Brown et al., 1996; Taramino et al., 1997; Bhattramakki et al., 2000; Kong et al., 2000; Schloss et al., 2002; Ramu et al., 2009; Mutegi et al., 2011) and specifically developed markers. These were obtained from $(GA)_n$, $(GT)_n$, or $(CCG)_n$ microsatellite-enriched libraries, following a hybridization-based method in which DNA was previously digested with *Pst*1 or *Rsa*1 as described in Billotte et al. (2005). Seven hundred

American Journal of Botany: e245-e250, 2012; http://www.amjbot.org/ © 2012 Botanical Society of America

TABLE 1. Characteristics of the 48 SSR markers used in the Sorghum bicolor technical diversity kit.

Marker ^a		Primer sequences (5'–3')	Repeat motif	GenBank accession no.	Chr ^b	Position ^c	$T_{\rm a}$ (°C)
gpsb0671	F:	TAGTCCATACACCTTTCA	(GT) ₁₀	JQ031014	8	13744996	49
	R:	TCTCTCACACACATTCTTC					
gpsb0691	F:	CCCATAATACTTGACCTTC	(TC) ₁₂	JQ031015	6	—	50
gpsb0891	R: F:	ACTTACTCCCTCTGTCCC	(TG) ₉	JQ031016	1	43884079	50
gpsb123 ²	R: F:	ATGCATCATGGCTGGT ATAGATGTTGACGAAGCA	(CA) ₇ (GA) ₅	JQ031017	8	52281926	50
gpsb148 ¹	R: F:	GTGGTATGGGACTGGA CAACCACAAACCAAGAG	$(TC)_3(CA)_5$	JQ031018	7	327117	50
	R:	ATAGAAATGGGGTGGAG	(OT)	10021010	4	2049029	50
gpsb151.	F: R:	GTTGGGGGAGAGTTTT	$(C1)_{12}$	JQ031019	4	2048028	50
mSbCIR2231	F: D.	CGTTCCAATGACTTTTCTTC	$(AC)_6$	JQ031020	2	4657470	55
mSbCIR238 ²	F:	AGAAGAAAAGGGGTAAGAGC	(AC) ₂₆	JQ031021	2	14746509	55
	R:	CGAGAAACAATTACATGAACC		10021022	0	44(774)	
mSbCIR240 ²	E: R:	GTTCTTGGCCCTACTGAAT TCACCTGTAACCCTGTCTTC	(1G) ₉	JQ031022	8	4467743	22
mSbCIR246 ²	F:	TTTTGTTGCACTTTTGAGC	(CA) ₇	JQ031023	7	56279794	55
mShCIP2482	R:	GATGATAGCGACCACAAATC	(GT)	10031024	5	4746082	56
11150CIR248	r. R:	ACTCCCATGTGCTGAATCT	$(01)_7$	3Q031024	5	4740082	50
mSbCIR262 ²	F:	GCACCAAAATCAGCGTCT	(CATG) ₃	JQ031025	10	55324102	57
mSbCIR276 ²	R: F·	CCATTTACCCGTGGATTAGT	$(\mathbf{AC})_{\mathbf{c}}$	IO031026	3	55555298	53
mbbene270	R:	GAGGCTGAGATGCTCTGT	(110)9	3Q031020	5	55555270	55
mSbCIR2831	F:	TCCCTTCTGAGCTTGTAAAT	$(CT)_8(GT)_8$	JQ031027	10	18099884	54
mSbCIR2861	R: F·	CAAGTCACTACCAAATGCAC	$(AC)_{\alpha}$	IO031028	1	57452822	55
histochiczot	R:	TTTATGGTAGGATGCTCTGC	(110)9	52031020	1	57 152622	55
mSbCIR300 ²	F:	TTGAGAGCGGCGAGGTAA	(GT) ₉	JQ031029	7	58286012	61
mSbCIR3061	к: F:	AAAAGCCCCAAGTCTCAGTGCTA ACATGGGGAGGAAGATGA	(CATG) ₂ (GT) ₇	JO031030	1	_	56
	R:	GCTATTCAGGAGCCATGC	()3()/				
mSbCIR3291	F: p.	GATCTTCACCAGGAACAGG	(AC) ₉	JQ031031	5	1763243	55
sb4-72 ³	F:	TGCCACCACTCTGGAAAAGGCTA	(AG) ₁₆	NA	6	41440341	55
ab5 2063	R:		(ΛC) (ΛC)	NA	0	50162202	55
S05-200*	r. R:	AAAAACCAACCCGACCCACTC	$(AC)_{13}(AO)_{20}$	11/2	2	59102505	55
sb6-84 ³	F:	CGCTCTCGGGATGAATGA	(AG) ₁₄	NA	2		55
ShAGB024	R: F·	TAACGGACCACTAACAAATGATT	(AG)	NΔ	7	62506705	55
50116202	R:	ATAGAGAGGATAGCTTATAGCTCA	(10)35	1421	,	02500705	55
Xcup02 ⁵	F:	GACGCAGCTTTGCTCCTATC	$(GCA)_6$	pSB0069	9	8143767	54
Xcup115	R: F·	GTCCAACCAACCCACGTATC TACCGCCATGTCATCAG	(GCTA),	nSB1889	3	1992880	54
TroupII	R:	CGTATCGCAAGCTGTGTTTG	(0011)4	P021003	U	1772000	5.
Xcup14 ⁵	F:	TACATCACAGCAGGGACAGG	(AG) ₁₀	pSB1802	3	72459931	54
Xcup53 ⁵	R: F:	GCAGGAGAGCCGAGCAGTATG	(TTTA) ₅	pSB0508	1	72905425	54
I	R:	CGACATGACAAGCTCAAACG	()3	I to the test			
Xcup61 ⁵	F:	TTAGCATGTCCACCACAACC	$(CAG)_7$	pSB0581	3	2576698	54
Xcup62 ⁵	F:	CGAGAAGATCGAGAGAACCC	(GAA) ₆	pSB0600	1	68743248	54
	R:	TGAAGACGACGACGACAGAC					
Xcup63 ⁵	F: D.	GTAAAGGGCAAGGCAACAAG	$(GGATGC)_4$	pSB0600	2	59104626	54
Xisep01076	г. F:	GCCGTAACAGAGAAGGATGG	$(TGG)_4$	AW744864	3	3209015	59
	R:	TTTCCGCTACCTCAAAAACC					
Xisep03106	F: R:	TGCCTTGTGCCTTGTTTATCT GGATCGATGCCTATCTCGTC	(CCAAT) ₄	AW286133	2	77623085	60
Xtxp10 ⁷	F:	ATACTATCAAGAGGGGAGC	(CT) ₁₄	NA	9	47916807	50
V to 107	R:	AGTACTAGCCACACGTCAC		NIA	4	4957(972	
Atxp12'	Ľ: R•	AGATUTGGUGGUAAUG AGTCACCCATCGATCATC	$(C1)_{22}$	INA	4	483/08/3	22
Xtxp15 ⁷	F:	CACAAACACTAGTGCCTTATC	(TC) ₁₆	NA	5	42049815	55
	R:	CATAGACACCTAGGCCATC					

TABLE 1. Continued.

Marker ^a		Primer sequences (5'–3')	Repeat motif	GenBank accession no.	Chr ^b	Position ^c	$T_{\rm a}$ (°C)
Xtxp21 ⁷	F:	GAGCTGCCATAGATTTGGTCG	(AG) ₁₈	NA	4	67961876	60
	R:	ACCTCGTCCCACCTTTGTTG					
Xtxp40 ⁷	F:	CAGCAACTTGCACTTGTC	(GGA) ₇	NA	7	860855	55
	R:	GGGAGCAATTTGGCACTAG					
Xtxp57 ⁷	F:	GGAACTTTTGACGGGTAGTGC	(GT) ₂₁	NA	6	57418801	55
	R:	CGATCGTGATGTCCCAATC					
Xtxp114 ⁷	F:	CGTCTTCTACCGCGTCCT	(AGG) ₈	NA	3	60794263	50
	R:	CATAATCCCACTCAACAATCC					
Xtxp136 ⁷	F:	GCGAATAGCATCTTACAACA	$(GCA)_5$	NA	5	—	55
	R:	ACTGATCATTGGCAGGAC					
Xtxp141 ⁷	F:	TGTATGGCCTAGCTTATCT	(GA) ₂₃	NA	10	58245266	55
	R:	CAACAAGCCAACCTAAA					
Xtxp145 ⁷	F:	GTTCCTCCTGCCATTACT	(AG) ₂₂	NA	6	_	55
	R:	CTTCCGCACATCCAC					
Xtxp265 ⁷	F:	GTCTACAGGCGTGCAAATAAAA	$(GAA)_{19}$	NA	6	51179303	55
_	R:	TTACCATGCTACCCCTAAAAGTGG					
Xtxp273 ⁷	F:	GTACCCATTTAAATTGTTTGCAGTAG	(TTG) ₂₀	NA	8	156965	55
	R:	CAGAGGAGGAGGAAGAGAGG					
Xtxp278 ⁷	F:	GGGTTTCAACTCTAGCCTACCGAACTTCCT	$(TTG)_{12}$	NA	7	51120645	50
	R:	ATGCCTCATCATGGTTCGTTTTGCTT			_		
Xtxp2957	F:	AAATCATGCATCCATGTTCGTCTTC	$(TC)_{19}$	NA	7	61172112	55
	R:	CTCCCGCTACAAGAGTACATTCATAGCTTA					
Xtxp320 ⁸	F:	TAAACTAGACCATATACTGCCATGATAA	$(AAG)_{20}$	NA	1	55381359	54
	R:	GTGCAAATAAGGGCTAGAGTGTT					
Xtxp3217	F:	TAACCCAAGCCTGAGCATAAGA	$(GT)_4(AT)_6(CT)_{21}$	NA	8	50508795	55
	R:	CCCATTCACACATGAGACGAG					
Xtxp3397	F:	CCGCACTCTCCACTCT	$(GGA)_7$	NA	9	—	55
	R:	CGGAACACAGGGAAGG					

Note: NA = not available; T_a = annealing temperature.

^aPublication information for the markers is as follows: ¹this paper; ²Mutegi et al., 2011; ³Brown et al., 1996; ⁴Taramino et al., 1997; ⁵Schloss et al., 2002; ⁶Ramu et al., 2009; ⁷Kong et al., 2000; ⁸Bhattramakki et al., 2000.

^bThe chromosome number was defined by genetic mapping and BLAST of the primer on sorghum sequence using Primer-BLAST at the National Center for Biotechnology Information (NCBI).

^cPosition on the chromosome pseudo-molecule (when a reliable Primer-BLAST result was obtained).

fifty-two enriched sequences were clustered, and PCR primer pairs for microsatellite amplification were designed using SAT pipeline (Dereeper et al., 2007). The 10 sorghum chromosomes were each partitioned into five bins and between one and four SSR markers were chosen in each bin. Genotyping was conducted in two laboratories (CIRAD and ICRISAT) following usual practices (Appendix 2). At CIRAD, the forward primer was designed with a 5'-end M13 extension (5'-CACGACGTTGTAAAACGAC-3'), and an IR-labeled IRDye M13 primer was added to the PCR. Electrophoresis and DNA fragment detection used polyacrylamide gel–based system sequencers (LI-COR, Lincoln, Nebraska, USA). At ICRISAT, PCR was performed using fluorescentlabeled primers, and detection used a capillary electrophoresis (Applied Biosystems, Carlsbad, California, USA).

Data acquired in both laboratories were compared taking into consideration exact scoring and heterozygosity levels of each DNA sample for all SSR pairs. Markers were considered reliable when more than 90% of the individuals yielded a scorable genotype and when results were congruent for more than 95% of the data points, i.e., presented identical scoring or homogeneous allelic size shifts and similar detection of heterozygosity. In bins presenting more than one reliable marker, selection was based on minimizing missing data. A set of 48 SSR markers was defined based on these criteria (Table 1). It includes nine markers designed in genes (Schloss et al., 2002; Ramu et al., 2009) and 39 markers designed in noncoding sequences (Brown et al., 1996; Taramino et al., 1997; Kong et al., 2000; Bhattramakki et al., 2000; Mutegi et al., 2011; this paper). Among the selected markers, different types of SSR motifs are represented: dinucleotide (61.2%), trinucleotide (26.5%), tetranucleotide (8.2%), pentanucleotide (2%), and hexanucleotide (2%), as well as perfect (89.8%) and imperfect (10.2%) repeats. The 48 selected markers are distributed across all 10 linkage groups (LG), with a range of three to seven markers per LG.

Among the 48 DNA samples analyzed, 10 samples presenting the largest allelic ranges available were chosen to be technical controls (IS929, IS2156, IS2807, IS7889, IS11119, IS12531, SSM275, SSM379, SSM546, and SSM1284). No particular focus was given to reflect sorghum races or geographic origins. Allele numbers ranged between two and 10 per marker. They were

associated into three control pools (C1 including IS2807, SSM1284, SSM275; C2 including IS11119, IS12531, IS929; and C3 including IS2156, IS7889, SSM379, SSM546) (Table 2). PCR amplifications were run a second time for these DNAs, in order to provide both absolute size information by allelic sequencing and clear picture references. PCR was carried out in a total reaction volume of 10 µL containing 25 ng of DNA, 1× buffer, 200 µM dNTP, 2.5 mM MgCl₂, 0.10 µM reverse primer, 0.08 µM forward-tailed primer, 0.10 µM M13-tailed primer labeled with IRDye 700 or IRDye 800, and 1 U of Taq polymerase (Life Technologies, Carlsbad, California, USA), and performed with an Eppendorf Mastercycler 384-well cycler (Eppendorf, Hamburg, Germany). PCR cycling profiles consisted of 4 min at 94°C; followed by nine cycles of 45 s at 94°C, annealing at decreasing temperatures (60°C for 1 min; -0.5°C/ cycle), and 72°C for 1 min 15 s; followed by 24 cycles at 94°C for 45 s, 55°C for 1 min, and 72°C for 1 min 15 s; with a final extension of 5 min at 72°C. Five µL of PCR products was sequenced by GATC Biotech (Constance, Germany; http://www.gatc-biotech.com). The remaining 5 μ L were used to provide the reference genotyping profile. They were equally pooled and diluted four times with a 1:5 formamide-water mix, and were separated and detected using a LI-COR 4300 DNA analyzer (LI-COR). Altogether, 196 alleles were sequenced and aligned against a reference sequence (Table 2).

CONCLUSIONS

A reference microsatellite kit was developed for *S. bicolor* genetic diversity assessment. It includes 10 reference accessions pooled into three groups designed to be used congruently and 48 SSR markers regularly spaced along the genome. All single results including primer design, PCR conditions, gel images, and allelic sizes are provided on the website (http://sat.cirad.fr/sat/sorghum_SSR_kit/). Control samples are available upon request (http://golo.

TABLE 2.	Alleles identified for each	SSR marker	on reference a	accessions o	of the	Sorghum	Genotype	Identification 2	Kit

SSR name Molecular size (bp) of the alleles C1 C2 gpsb067 170 172 174 176 178 180 170, 174, 180 172, 172, 176 gpsb069 191 193 195 197 191, 193, 195 193, 193, 195 gpsb089 165 167 169 173 165, 167, 169 165, 165, 169 gpsb123 288 290 292 294 296 290, 290, 296, 296 290, 292, 296	C3 170, 172, 172, 178, 180 191, 193, 193, 197 165, 169, 169, 173 288, 294, 296, 296 135, 135, 135, 135 108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105
gpsb067170172174176178180170, 174, 180172, 172, 176gpsb069191193195197191, 193, 195193, 193, 195gpsb089165167169173165, 167, 169165, 165, 169gpsb123288290292294296290, 290, 296, 296290, 292, 296	170, 172, 172, 178, 180 191, 193, 193, 197 165, 169, 169, 173 288, 294, 296, 296 135, 135, 135, 135 108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105
gpsb069191193195197191, 193, 195193, 193, 193gpsb089165167169173165, 167, 169165, 165, 169gpsb123288290292294296290, 290, 296, 296290, 292, 296	191, 193, 193, 197 165, 169, 169, 173 288, 294, 296, 296 135, 135, 135, 135 108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105
gpsb089 165 167 169 173 165, 167, 169 165, 165, 169 gpsb123 288 290 292 294 296 290, 290, 296, 296 290, 292, 296	165, 169, 169, 173 288, 294, 296, 296 135, 135, 135, 135 108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105
gpsb123 288 290 292 294 296 290, 290, 290, 296, 296 290, 292, 296	288, 294, 296, 296 135, 135, 135, 135 108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105
	135, 135, 135, 135 108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105 112, 112, 112, 112
gpsb148 135 137 143 147 135, 135, 135, 135, 135, 135, 135, 147	108, 110, 126, 126 112, 114, 116, 118 79, 81, 83, 105 112, 112, 112, 112
gpsb151 106 108 110 114 118 126 128 106,108,128 108,114,128	112, 114, 116, 118 79, 81, 83, 105
mSbCIR223 108 112 114 116 118 108, 112, 118 108, 114, 118	79, 81, 83, 105
mSbCIR238 79 81 83 85 91 95 105 107 81, 85, 91 81, 95, 107	112 112 112 112
mSbCIR240 108 112 108, 112 108, 112 108, 108, 112	112, 112, 112, 112
mSbCIR246 98 100 98, 100, 100, 100, 100, 100	100, 100, 100, 100
mSb, IR248 89 95 99 101 89, 95, 99, 101, 101 89, 89, 101, 101	89, 89, 89, 101
mSbCIR262 208 214 216 220 208, 214, 216 214, 216 214, 216	216, 216, 216, 220
mSbCIR276 230 231 232 234 230, 230, 234 230, 230, 232	230, 230, 232, 232, 232
mSbCIR283 113 115 117 119 121 135 137 139 119, 121, 139 113, 113, 117	117, 119, 135, 137
mSbCIR286 112 114 128 134 112, 114, 114 114, 128, 134	114, 114, 114, 134
mSbCIR300 104 106 108 110 104, 106, 110 108, 108, 110	104, 108, 110, 110
mSbCIR306 120 122 124 120, 122 120, 122 120, 122 120	122, 122, 124, 124
mSbCIR329 109 111 113 115 117 109, 115, 115 113, 115, 117	111, 113, 115, 115
sb4-72 183 187 189 191 193 195 203 187, 191, 195 187, 189, 193, 203	183, 189, 189, 193
sb5-206 106 108 110 112 114 116 128 132 142 146 110, 114, 128 106, 114, 116	108, 112, 142, 146
sb6-84 183 189 191 193 195 199 217 183 189 195 193 199 199	183, 191, 195, 217
sbAGB02 96 102 108 116 118 154 96,102,116 96,96,108,154	96, 96, 96, 102
Xisep0107 199 205 206 199, 199, 205 199, 199, 205	199, 199, 205, 206
Xisep0310 164 204 219 204, 204, 219 164, 204, 204	164, 204, 204, 204
Xcup02 192 195 198 204 192, 195, 195 198, 204	192, 198, 198, 198
Xcup11 165 172 165, 165, 172 165, 165, 172	165, 172, 172, 172
Xcup14 211 213 215 225 211, 213, 225 211, 211, 215	211, 211, 211, 211, 215
Xcup53 186 194 198 194, 194, 194, 194, 194, 198	194, 194, 194, 198
Xcup61 198 201 198, 201, 201 198, 201, 201	198, 201, 201, 201
Xcup62 190 193 190, 193 190, 193 190, 193	190, 190, 190, 193
Xcup63 133 139 145 133 139 145 145	139, 145, 145, 145
Xtxp010 135 143 145 151 143, 143, 151 135, 151	143, 145, 145, 151, 151
Xtxp012 161 173 175 179 185 193 195 205 161, 173, 173 175, 185, 195	179, 185, 193, 205
Xtxp015 199 209 211 215 219 223 209 215 223 209 215 223 211 215 219	199, 199, 211, 211
Xtxp021 169 175 184 185 191 197 199 169, 175, 191 175, 185, 197	175, 175, 175, 199
Xtxp040 129 135 138 141 129, 138, 141 135, 138, 138	135, 138, 138, 138
Xtxp057 223 237 241 243 245 247 251 257 223, 241, 247 237, 241, 245	241, 243, 245, 257
Xtxp114 211 214 217 211, 214 214, 214, 214, 217	211, 214, 214, 214
Xtxp136 240 243 243, 243 243, 243 240, 240, 243, 243	240, 240, 243, 243
Xtxp141 135 141 145 151 155 157 161 163 167 151, 157, 157 135, 141, 155	145, 155, 161, 167
Xtxp145 208 210 214 224 232 238 242 244 226 228 246 214 232 242	210, 224, 238, 244
Xtxp265 186 198 209 213 216 222 234 186 198 213 198 216 234	186, 216, 222, 234
Xtxp273 169 181 187 190 193 199 169, 190 181, 190 191 190	187, 190, 190, 193
Xtxp278 243 249 252 243, 249 243, 249 243, 249	243, 249, 249, 252
Xtxp295 155 163 167 169 173 175 177 183 173, 177, 183 155, 167, 169	163, 167, 175, 175
Xtxp320 257 269 272 275 278 281 287 290 275, 275, 281 257, 272, 287	269, 275, 275, 278
Xtxp321 192 198 200 202 204 206 208 218 252 202, 208, 252 198, 200, 202, 204	192, 198, 198, 218
Xtxp339 182 200 203 182, 200, 200, 200, 200, 200, 200, 203	200, 200, 200, 200

^aAll allele sizes were assessed through sequencing of the alleles, and detection was performed by migration on a LI-COR system. Sizes of the control are indicated in term of allelic doses in each DNA pool (C1, C2, and C3), i.e., when an allele is repeated, it is present more than once in individuals of the control. The intensity of the peak/band should thus be expected to be more intense. Allele sizes of individual samples, as well as profiles, are provided in the associated website (http://sat.cirad.fr/sat/sorghum_SSR_kit/).

cirad.fr/FR/CRB_T_Collections_Sorgho.awp). This microsatellite kit will be very useful for compiling sorghum data across laboratories and techniques, as well as for comparisons of new genetic diversity studies to previous analyses.

LITERATURE CITED

- BHATTRAMAKKI, D., J. DONG, A. K. CHHABRA, AND G. E. HART. 2000. An integrated SSR and RFLP linkage map of *Sorghum bicolor* (L.) Moench. *Genome* 43: 988–1002.
- BILLOTTE, N., N. MARSEILLAC, A.-M. RISTERUCCI, B. ADON, P. BROTTIER, F.-C. BAURENS, R. SINGH, ET AL. 2005. Microsatellite-based high density

linkage map in oil palm (*Elaeis guineensis* Jacq.). *Theoretical and Applied Genetics* 110: 754–765.

- BROWN, S. M., M. S. HOPKINS, S. E. MITCHELL, M. L. SENIOR, T. Y. WANG, R. R. DUNCAN, F. GONZALEZ CANDELAS, AND S. KRESOVICH. 1996. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics 93: 190–198.
- DEREEPER, A., X. ARGOUT, C. BILLOT, J.-F. RAMI, AND M. RUIZ. 2007. SAT, a flexible and optimized Web application for SSR marker development. *BMC Bioinformatics* 8: 465–475.
- DEU, M., F. RATTUNDE, AND J. CHANTEREAU. 2006. A global view of genetic diversity in cultivated sorghums using a core collection. *Genome* 49: 168–180.

- GEORGE, M. L. C., E. REGALADO, W. LI, M. CAO, M. DAHLAN, M. PABENDON, M. L. WARBURTON, ET AL. 2004. Molecular characterization of Asian maize inbred lines by multiple laboratories. *Theoretical and Applied Genetics* 109: 80–91.
- KONG, L., J. DONG, AND G. E. HART. 2000. Characteristics, linkage-map positions, and allelic differentiation of *Sorghum bicolor* (L.) Moench DNA simple-sequence repeats (SSRs). *Theoretical and Applied Genetics* 101: 438–448.
- MUTEGI, E., F. SAGNARD, K. SEMAGN, M. DEU, M. MURAYA, B. KANYENJI, S. DE VILLIERS, ET AL. 2011. Genetic structure and relationships within and between cultivated and wild sorghum *(Sorghum bicolor (L.)* Moench) in Kenya as revealed by microsatellite markers. *Theoretical* and Applied Genetics 122: 989–1004.
- PATERSON, A. H., J. E. BOWERS, R. BRUGGMANN, I. DUBCHAK, J. GRIMWOOD, H. GUNDLACH, G. HABERER, ET AL. 2009. The Sorghum

bicolor genome and the diversification of grasses. *Nature* 457: 551–556.

- RAMU, P., B. KASSAHUN, S. SENTHILVEL, C. ASHOK KUMAR, B. JAYASHREE, R. T. FOLKERTSMA, L. A. REDDY, ET AL. 2009. Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. *Theoretical and Applied Genetics* 119: 1193–1204.
- SCHLOSS, S. J., S. E. MITCHELL, G. M. WHITE, R. KUKATLA, J. E. BOWERS, A. PATERSON, AND S. KRESOVITCH. 2002. Characterization of RFLP probe sequences for gene discovery and SSR development in *Sorghum bicolor* (L.) Moench. *Theoretical and Applied Genetics* 105: 912–920.
- TARAMINO, G., R. TARCHINI, S. FERRARIO, M. LEE, AND M. E. PE. 1997. Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theoretical and Applied Genetics 95: 66–72.

APPENDIX 1. List of 48 DNA samples chosen to test the reliability of the 117 SSR markers.^a

Accession no.	Geographic origin ^b	e Latitude	Longitude	Racial characterization ^c	Accession no.	Geographic origin ^b	Latitude	Longitude	Racial characterization ^c
IS303	CHN	NA	NA	В	IS23178	ZMB	-15.561	28.285	DC
IS929	SDN	NA	NA	D	IS23254	ZMB	NA	NA	В
IS2156	NGA	NA	NA	В	IS23644	GMB	13.660	-15.400	Gma
IS2262	SDN	NA	NA	С	IS28409	YEM	11.220	14.370	D
IS2263	SDN	NA	NA	D	IS29233	SWZ	NA	NA	GC
IS2807	ZWE	NA	NA	С	IS29407	LSO	-29.530	28.150	GC
IS3421	IND	19.260	76.770	D	IS30405	CHN	36.848	111.779	D
IS3967	IND	NA	NA	D	IS30538	KOR	NA	NA	В
IS4821	IND	22.310	73.180	DC	SSM29	CMR	NA	NA	Dmkr
IS6193	IND	26.320	80.290	G	SSM205	BFA	NA	NA	Gga
IS6745	BFA	NA	NA	Gga	SSM215	ETH	NA	NA	С
IS7889	NGA	10.430	3.820	С	SSM249	BFA	12.370	-1.525	G
IS8685	SDN	NA	NA	С	SSM275	BFA	12.267	-2.150	G
IS9597	NER	13.260	7.060	D	SSM379	MLI	NA	NA	G
IS11119	ETH	9.500	38.230	D	SSM505	NER	NA	NA	Gma
IS12531	ETH	9.300	42.130	DB	SSM546	NER	NA	NA	D
IS14331	ZAF	NA	NA	Gro	SSM547	NER	NA	NA	С
IS14414	MWI	NA	NA	Gcon	SSM557	NER	NA	NA	G
IS16186	CMR	NA	NA	D	SSM964	SEN	NA	NA	D
IS19453	BWA	NA	NA	D	SSM973	SEN	NA	NA	Gma
IS19455	BWA	NA	NA	Gma	SSM1049	SEN	14.720	-17.274	G
IS20016	SEN	14.130	-14.970	G	SSM1057	SEN	14.733	-16.567	D
IS22282	BWA	-23.100	26.830	В	SSM1284	COD	NA	NA	В
IS22294	BWA	-23.010	27.760	Κ	Sariaso10	BFA	NA	NA	С

^aAccessions were all taken from previous collections (IS numbers available at ICRISAT, India; SSM numbers available at CIRAD, France). Information provided is from the associated databases, which do not always provide GPS indications; accessions without GPS information are noted as NA (not available). All the accessions are freely available and can be ordered through the System-wide Information Network for Genetic Resources (SINGER) website (http://singer.cgiar.org) or at CIRAD (http://golo.cirad.fr/FR/CRB_T_Collections_Sorgho.awp).

^bGeographic origin: BFA = Burkina Faso; BWA = Botswana; CHN = China; CMR = Cameroon; COD = Democratic Republic of Congo; ETH = Ethiopia; GMB = Gambia; IND = India; KOR = Republic of Korea; LSO = Lesotho; MLI = Mali; MWI = Malawi; NER = Niger; NGA = Nigeria; SDN = Sudan; SEN = Senegal; SWZ = Swaziland; YEM = Yemen; ZAF = South Africa; ZMB = Zambia; ZWE = Zimbabwe.

^cRacial characterization: B = bicolor; C = caudatum; D = durra; DB = durra bicolor; DC = durra caudatum; Dmkr = durra muskwaari; G = guinea; Gma = guinea margaritiferum; GC = guinea-caudatum; Gcon = guinea conspicuum; Gga = guinea gambicum; Gma = guinea margaritifirum; Gro = guinea roxburghii; K = kafir.

e250

APPENDIX 2. PCR and detection conditions in the two laboratories for comparing the 117 SSR markers.

- **CIRAD:** The forward primer was designed with a 5'-end M13 extension (5'-CACGACGTTGTAAAACGAC-3').
- PCR amplifications were performed in an Eppendorf thermocycler (Eppendorf, Hamburg, Germany) on 25 ng DNA in a 10 μL final volume of buffer (10 mM Tris-HCl [pH 8], 100 mM KCl, 0.05% w/v gelatin, and 2.0 mM MgCl₂) containing 0.08 μM of the M13-tailed primer, 0.1 μM of the other primer, 160 μM of dNTP, 1 U of *Taq* DNA polymerase (Life Technologies, Carlsbad, California, USA), and 0.06 μM of M13 IRDye 700 or IRDye 800-labeled primer (Biolegio, Nijmegen, The Netherlands).
- For all primer pairs, the PCR program was: initial denaturation at 95°C for 1 min; 10 cycles of touchdown PCR from 60°C to 55°C with 94°C for 30 s, T_a for 60 s, and 72°C for 120 s; 25 cycles of 94°C for 30 s, 55°C for 60 s, and 72°C for 120 s; and a final elongation step at 72°C for 8 min.
- IRDye 700–labeled or IRDye 800–labeled PCR products were diluted 10fold and fourfold respectively, then subjected to electrophoresis in 6.5% polyacrylamide gels with a LI-COR IR2 system with LI-COR size standard (LI-COR, Lincoln, Nebraska, USA).

- **ICRISAT:** Amplifications were performed using fluorescently labeled forward primers (6-FAM, HEX, and NED; Applied Biosystems, Carlsbad, California, USA).
- PCR reactions were performed in 5 μ L reaction volumes with final concentrations of 2.5 ng DNA, 2 mM MgCl₂, 0.1 mM of dNTP, 1× PCR buffer, 0.2 μ M of forward and reverse primers, and 0.1 U of *Taq* DNA polymerase (AmpliTaq Gold, Applied Biosystems) in a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems) with the following cyclic conditions: initial denaturation at 94°C for 15 min (to activate *Taq* DNA polymerase), followed by 10 cycles of denaturation at 94°C for 15 sec, annealing at 61°C for 20 sec (temperature reduced by 1°C for each cycle), and extension at 72°C for 30 sec. This was followed by 35 cycles of denaturation at 94°C for 10 sec, annealing at 54°C for 20 sec, and extension at 72°C for 30 sec, with the final extension of 20 min at 72°C.
- Amplified PCR products, according to their multiplexes, along with internal ROX-400 size standard, were separated by capillary electrophoresis using an ABI 3700 sequencer (Applied Biosystems).