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Bananas (Musa spp.), including dessert and cooking types, are giant
perennial monocotyledonous herbs of the order Zingiberales, a
sister group to the well-studied Poales, which include cereals.
Bananas are vital for food security in many tropical and subtropical
countries and the most popular fruit in industrialized countries1.
The Musa domestication process started some 7,000 years ago in
Southeast Asia. It involved hybridizations between diverse species
and subspecies, fostered by human migrations2, and selection of
diploid and triploid seedless, parthenocarpic hybrids thereafter
widely dispersed by vegetative propagation. Half of the current
production relies on somaclones derived from a single triploid
genotype (Cavendish)1. Pests and diseases have gradually become
adapted, representing an imminent danger for global banana pro-
duction3,4. Here we describe the draft sequence of the 523-megabase
genome of a Musa acuminata doubled-haploid genotype, providing
a crucial stepping-stone for genetic improvement of banana. We
detected three rounds of whole-genome duplications in the Musa
lineage, independently of those previously described in the Poales
lineage and the one we detected in the Arecales lineage. This first
monocotyledon high-continuity whole-genome sequence reported
outside Poales represents an essential bridge for comparative
genome analysis in plants. As such, it clarifies commelinid-
monocotyledon phylogenetic relationships, reveals Poaceae-
specific features and has led to the discovery of conserved non-
coding sequences predating monocotyledon–eudicotyledon
divergence.

Banana cultivars mainly involve M. acuminata (A genome) and
Musa balbisiana (B genome) and are sometimes diploid but generally
triploid5,6. We sequenced the genome of DH-Pahang, a doubled-
haploid M. acuminata genotype (2n 5 22), of the subspecies malaccensis
that contributed one of the three acuminata genomes of Cavendish7.
A total of 27.5 million Roche/454 single reads and 2.1 million
Sanger reads were produced, representing 20.53 coverage of the
523-megabase (Mb) DH-Pahang genome size, as estimated by flow
cytometry. In addition, 503 of Illumina data were used to correct

sequence errors. The assembly consisted of 24,425 contigs and 7,513
scaffolds with a total length of 472.2 Mb, which represented 90% of
the estimated DH-Pahang genome size. Ninety per cent of the
assembly was in 647 scaffolds, and the N50 (the scaffold size above
which 50% of the total length of the sequence assembly can be found)
was 1.3 Mb (Supplementary Text and Supplementary Tables 1–3). We
anchored 70% of the assembly (332 Mb) along the 11 Musa linkage
groups of the Pahang genetic map. This corresponded to 258 scaffolds
and included 98.0% of the scaffolds larger than 1 Mb and 92% of the
annotated genes (Supplementary Text, Supplementary Table 4 and
Supplementary Fig. 1).

We identified 36,542 protein-coding gene models in the Musa
genome (Supplementary Tables 1 and 5). A total of 235 microRNAs
from 37 families were identified, including only one of the eight
microRNA gene (MIR) families found so far solely in Poaceae8

(Supplementary Tables 6 and 7).
Viral sequences related to the banana streak virus (BSV) dsDNA

plant pararetrovirus were found to be integrated in the Pahang
genome, with 24 loci spanning 10 chromosomes (Supplementary
Text and Supplementary Fig. 2). They belonged to a badnavirus
phylogenetic group that differed from the endogenous BSV species
(eBSV) found in M. balbisiana9 and most of them formed a new
subgroup (Supplementary Fig. 3). Importantly, all of the integrations
were highly reorganized and fragmented and thus did not seem to be
capable of forming free infectious viral particles, contrary to the eBSV
described in M. balbisiana10.

Transposable elements account for almost half of the Musa
sequence (Supplementary Text and Supplementary Tables 1 and
8–10). Long terminal repeat retrotransposons represent the largest
part, with Copia elements being much more abundant than Gypsy
elements (25.7–11.6%) (Supplementary Fig. 4). No major recent wave
of long terminal repeat retrotransposon insertions appears to have
occurred in the Musa lineage. Fewer than 1% of the long terminal
repeat retrotransposons are complete and their median date of inser-
tion is around 4 Myr ago, corresponding to the half-life of this type of
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transposable element11 (Supplementary Fig. 5). Long interspersed ele-
ments (LINEs) represent 5.5% of the genome. The banana genome is
exceptional in the composition of its class 2 element population, which
represents only about 1.3% of the genome. The only superfamilies
identified were hAT, followed by Harbinger and Mutator. Only the
first family was significantly represented and had non-autonomous
deletion derivatives. The superfamilies CACTA and Mariner, which
have been found in high copy numbers in all angiosperm genomes
studied so far, are absent from the banana genome. Gene-rich regions
are mostly located on distal parts of chromosomes, as observed in
other plant genomes (Fig. 1 and Supplementary Fig. 1). There is,
however, a particularly sharp transition between gene-rich and
transposable-element-rich regions. This observation is confirmed by
the pattern observed after genomic in situ hybridization, which
shows that transposable elements are typically concentrated around
centromeres in Musa12 (Supplementary Fig. 6). The asymmetric
transposable element distributions along the chromosomes indicated
that chromosomes 1 and 2 are acrocentric in DH-Pahang (Fig. 1).
Long terminal repeat retrotransposons are particularly abundant
in centromeric and pericentromeric chromosome regions. Their
accumulation in these regions, particularly for the oldest ones, suggests
that they are preferentially eliminated from gene-rich regions13

(Supplementary Fig. 5). Remarkably, typical short tandem centro-
meric repeats were not found in Musa. However, one long interspersed
element (named Nanica) identified in the unassembled reads was
localized by fluorescence in situ hybridization in the centromeric
region of all Musa chromosomes (Supplementary Fig. 7 and Sup-
plementary Table 10).

Whole-genome duplications (WGDs) have played a major role in
angiosperm genome evolution14; the first evidence of a WGD event in
the Musa lineage was reported by Lescot et al.15. We uncovered a
complex pattern of paralogous relationships between the 11 Musa
chromosomes (Supplementary Text and Supplementary Fig. 8).
Most paralogous gene clusters shared relationships with three other
clusters, suggesting that two WGDs (denoted as a and b) occurred
(Supplementary Fig. 9). Based on Ks and synteny relationships,
duplicated gene clusters were tentatively assembled into 12 Musa
ancestral blocks representing the ancestral genome before the a/b
duplications (Figs 1 and 2 and Supplementary Figs 10–12). The
duplicated segments included in the Musa ancestral blocks cover
222 Mb (67% of the anchored assembly) and contain 26,829 genes
(80% of the anchored genes) (Supplementary Table 11). The Ks
distribution among pairs of paralogous gene clusters dated the two
WGDs at a similar period around 65 Myr ago (Supplementary Fig. 13),
consistent with the WGDs that occurred in many different plant

lineages near the Cretaceous–Tertiary boundary14 (Fig. 3). Additional
paralogous relationships between the 12 Musa ancestral blocks display-
ing higher Ks values suggested that an additional, more ancient duplica-
tion event (denoted as c) occurred around 100 Myr ago (Fig. 3 and
Supplementary Figs 10, 11, 13 and 14).

In the grass lineage, it is well established that one WGD (denoted as
r) occurred around 50–70 Myr ago, after Poales separated from other
monocotyledon orders16,17. Evidence was reported on an additional
WGD (denoted as s) earlier in the monocotyledon lineage, but after
its divergence from the eudicotyledons18. Our comparison of the Musa
ancestral blocks with the Poaceae r and s ancestral blocks as defined
by Tang et al.18 revealed that genes from segments of different r blocks
(corresponding to one s block) have orthologous relationships with
the same Musa regions, showing that thes Poaceae event is not shared
with Musa. Reciprocally, genes from Musa a/b paralogous segments
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Figure 1 | Chromosomal distribution of the main M. acuminata genome
features. Distribution of genes and transposable elements (left) and paralogous
relationships between the 11 chromosomes indicated with 12 distinct colours

corresponding to the 12 Musa a/b ancestral blocks (right). LINEs, long
interspersed elements.
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have orthologous relationships with the same r and s regions, show-
ing that the earliest duplication (c) we identified in the Musa lineage is
not shared with Poaceae (Fig. 2 and Supplementary Fig. 15).

Independent phylogenomic analyses performed on 3,553 gene
families, including genes mapped to syntenic ancestral blocks,
generated further evidence (98.7–77.6% of the gene trees, Supplemen-
tary Text) that the three rounds of palaeopolyploidization identified in
the Musa genome and the two previously reported in the Poaceae
lineage occurred independently after the Poales and Zingiberales
divergence estimated at 109–123 Myr ago19 (Fig. 3 and Supplemen-
tary Fig. 16).

Resolution of the Zingiberales relationship relative to Poales and
Arecales (palms) has been problematic (see, for example, Givnish et
al.20), but our analysis of 93 single-copy nuclear genes suggested that
the palms are more closely related to Zingiberales (including Musa)
than to Poales (Fig. 3, Supplementary Text and Supplementary
Fig. 17). Phylogenomic and synteny analyses indicated that the palms
do not, however, share any of the Poales or Zingiberales WGDs
discussed here (Supplementary Figs 17 and 18). Moreover, our Ks
analyses of date-palm gene models21 indicated that the palm genome
had its own WGD event (Supplementary Fig. 19).

Most (65.4%) of the genes included in the Musa a/b ancestral blocks
are singletons and only 10% are retained in four copies, in agreement
with the loss of most gene-duplicated copies after WGD22. The most
retained gene ontology categories corresponded to genes involved in
transcription regulation (transcription factor activity), signal trans-
duction including small GTPase-mediated signal transduction and
protein kinases, and translational elongation (Supplementary Text
and Supplementary Tables 12–14). This might be explained by the
gene balance hypothesis23, which suggests that genes involved in multi-
proteic complexes or regulatory genes are dosage sensitive and thus are
more prone to be co-retained or co-lost after WGD24. With 3,155
genes, the number of Musa transcription factors identified is among
the highest of all sequenced plant genomes (Supplementary Table 15
and 16).

Comparison of Musa, rice, sorghum, Brachypodium, date palm
(Phoenix dactylifera) and Arabidopsis proteomes revealed 7,674 gene
clusters in common to all six species, thus representing ancestral gene

families (Fig. 4). Interestingly, many specific clusters (2,809 in our
setting) proved specific to Poaceae, suggesting a high level of gene
divergence and diversification within the grass lineage. Specific
Musa clusters (759) were enriched in genes encoding transcription
factors (for example, Myb and AP2/ERF families), defence-related
proteins, enzymes of cell-wall biosynthesis and enzymes of secondary
metabolism (Supplementary Table 17).

We compared the distribution of GC3 content (G or C in the third
codon position) in Musa coding sequences with those of rice, ginger
(Zingiber officinale) and date palm because this distribution was
shown to be bimodal in Poaceae and unimodal in all analysed
eudicotyledons25. In Musa, a GC-rich peak was apparent but less
distinct from the GC-poor one (Supplementary Text, Supplementary
Figs 20–23 and Supplementary Table 18), which confirms preliminary
evidence that placed Musa in an intermediate position15. This feature
was shared with ginger (Zingiberales) and contrasts with the unimodal
GC distribution of date-palm coding sequences (Supplementary
Fig. 21).

Plant conserved non-coding sequences (CNSs)—a type of phylo-
genetic footprint—are enriched in known transcription factors or
other cis-acting binding sites, and are usually clustered around regu-
latory genes, supporting their functionality26. Starting with a collection
of 16,978 CNSs conserved in Poaceae, we used the Musa genome to
identify the 116 most deeply conserved regulatory binding sequences
in the commelinid monocotyledon lineage (Supplementary Text, Sup-
plementary Tables 19 and 20, and Supplementary Fig. 24). Deeply
conserved CNSs in commelinids were frequently found located 59 to
genes encoding transcription factors, and were significantly enriched
in WRKY motifs (Supplementary Table 21). After WGD, genes
associated with deeply conserved CNSs were found to be retained as
duplicates more often than genes with less deeply conserved CNSs
(Supplementary Table 22). The banana genome also served as a
stepping-stone to finding CNSs conserved beyond monocotyledons,
including 18 CNSs that were found in this study to be conserved in the
expected syntenic position in eudicotyledons as well (Supplementary
Table 23). This evolutionary distance is not unusual for vertebrate
CNSs (detectable after more than 400 million years of divergence)27

but it surpasses the findings of previous plant whole-genome surveys26.
Plant deeply conserved CNSs are therefore rare but do exist, and are
short compared with those of animals27, and must be at least as old as
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monocotyledon–eudicotyledon divergence (more than 130 million
years of divergence).

The reference Musa genome sequence represents a major advance
in the quest to unravel the complex genetics of this vital crop, whose
breeding is particularly challenging. Having access to the entire Musa
gene repertoire is a key to identifying genes responsible for important
agronomic characters, such as fruit quality and pest resistance.
Bananas are exported green and then ripened by application of
ethylene. RNA-Seq analysis indicated strong transcriptional repro-
gramming in mature green banana fruits after ethylenic treatment
(Supplementary Text, Supplementary Tables 24–26 and Supplemen-
tary Fig. 25). Transcription factors were particularly involved with 597
differentially regulated genes. Various modifications confirmed the
biochemistry of the banana ripening process28, such as highly upregu-
lated genes encoding cell-wall modifying enzymes, three downregu-
lated starch synthase genes and one upregulated b-amylase gene. Two
WGD-derived paralogous vacuolar invertase genes involved in sucrose
conversion displayed opposite expression profiles, suggesting subfunc-
tionalization and possible contribution to the soluble sugar balance in
ripening bananas (Supplementary Fig. 26). The race against pathogen
evolution is particularly critical in clonally propagated crops such as
banana. Up to 50 pesticide treatments a year are required in large
plantations against black leaf streak disease, a recent pandemy caused
by Mycosphaerella fijiensis3. Moreover, outbreaks of a new race of the
devastating Panama disease fungus (Fusarium oxysporum f. sp.
cubense) are spreading in Asia4. Among defence-related genes, those
encoding nucleotide-binding site leucine-rich repeat proteins were
found to be little represented in the Musa sequence (89 genes)
(Supplementary Table 27). RNA-Seq analysis showed that receptor-
like kinase genes were upregulated in a partially resistant interaction
with M. fijiensis (Supplementary Text, Supplementary Table 28 and
Supplementary Fig. 27). Interestingly, direct links between basal plant
immunity triggered by receptor-like kinase proteins and quantitative
trait loci for partial resistance have been recently established in several
plant species (see, for example, Poland et al.29). In addition, we showed
that DH-Pahang is highly resistant to the new broad-range Fusarium
oxysporum race 4 (Supplementary Text and Supplementary Fig. 28),
thus conferring additional specific value to the DH-Pahang sequence.

The Musa genome sequence reported here bridges a large gap
in genome evolution studies. As such, it sheds new light on the
monocotyledon lineage. Several Poaceae-specific characteristics could
be highlighted, boosting prospects for analysing the emergence of
this very successful family. The Musa genome also enabled identifica-
tion of deeply conserved CNS within commelinid monocotyledons
and between monocotyledons and eudicotyledons, representing an
invaluable resource for detecting novel motifs with a gene regulation
function. We detected three rounds of polyploidization in the Musa
lineage, which were followed by gene loss and chromosome rearrange-
ments, resulting in little synteny conservation between lineages
(Supplementary Figs 29 and 30) and over-retention of some gene
classes, thus providing ample opportunities for independent diver-
sification. In particular, transcription factor families are strikingly
expanded in Musa compared with other plant genomes and probably
contribute to specific aspects of banana development.

The Musa genome sequence is therefore an important advance
towards securing food supplies from new generations of Musa crops,
and provides an invaluable stepping-stone for plant gene and genome
evolution studies.

METHODS SUMMARY
Sanger (ABI 3730xl sequencers) and Roche/454 (GSFLX pyrosequencing
platform) reads were assembled with Newbler. Scaffolds were anchored to
Pahang linkage groups using 652 markers (SSR and DArT). Protein-coding gene
model prediction on the repeat-masked sequence was done with the GAZE30

computational framework by combining ab initio gene predictions, protein
similarity, existing banana and monocotyledon transcript information and banana
RNA-Seq data. A reference library of Musa transposable elements was built based

on sequence similarity at the protein and nucleic acid levels and on searches for
transposable-element structural signatures. The library was used with the REPET
package (http://urgi.versailles.inra.fr/Tools/REPET) to screen the Musa assembly
and quantify repeats.

RNA-Seq differential gene expression analysis was performed using Illumina
GAIIx 76 bases reads that were mapped to the DH-Pahang sequence using SOAP2
(http://soap.genomics.org.cn/).

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Plant material and DNA preparation. Doubled-haploid Pahang (DH-Pahang,
ITC1511) was obtained from wild M. acuminata subspecies malaccensis accession
‘Pahang’ through anther culture and spontaneous chromosome doubling31.
Genome sizes were estimated by flow cytometry according to Marie and
Brown32. High molecular weight DNA was prepared from the youngest fully
expanded leaf of DH-Pahang as described in Piffanelli et al.33 with minor
modifications (Supplementary Text).
Genome sequencing. The genome was sequenced using a Whole Genome
Shotgun strategy combining Sanger, Roche/454 GSFLX and Illumina GAIIx tech-
nologies. Sanger sequencing was performed with the ABI 3730xl on 10-kilobase
(kb) inserts and on two BAC libraries generated with the HindIII and BamHI
restriction enzymes resulting in 2.0 million 10-kb fragment-ends and about 90,500
BAC-ends. A total of 27.5 million reads were obtained using Roche/454 GSFLX.
Genome assembly and automatic error corrections with Solexa/Illumina
reads. All reads were assembled with Newbler version MapAsmResearch-03/15/
2010. From the initial 29,620,875 reads, 87.8% were assembled. We obtained
24,425 contigs that were linked into 7,513 scaffolds. The contig N50 (the contig
size above which 50% of the total length of the sequence assembly is included) was
43.1 kb, and the scaffold N50 was 1.3 Mb. The cumulative scaffold size was
472.2 Mb, about 10% smaller than the estimated genome size of 523 Mb.
Sequence quality of scaffolds from the Newbler assembly was improved as
described previously34, by automatic error corrections with Solexa/Illumina reads
(50-fold genome coverage), which have a different bias in error type compared
with 454 reads. To validate the assembly, we built a unigene set corresponding to
15,017 isotigs that were obtained from the assembly with Newbler (version
MapAsmResearch-03/15/2010) of Roche/454 GSFLX reads from six different
complementary DNA (cDNA) libraries (829,587 reads, Supplementary Text).
The unigenes were aligned with the assembly using the BLAT algorithm35 with
default parameters, and the best match was kept for each unigene. The assembly
covers a very large proportion of the euchromatin of the M. acuminata genome, as
99% of the set of 15,017 unigenes was recovered in the DH-Pahang genome
assembly.
Construction of the Pahang genetic map and sequence anchoring. A genetic
map was specifically developed for scaffold anchoring and orientation. A total of
2,454 single sequence repeats (SSR) markers and 1,008 polymorphic diversity
array technology (DArT) markers were analysed including 1,411 new SSRs
defined on sequence contigs and scaffolds. The map used for anchoring was built
with 589 SSR and 63 DArT markers that were genotyped on 180 individuals of the
Pahang self progeny. Data were analysed using JoinMap 4 (Plant Research
International). The 652 markers anchored 258 scaffolds along the 11 linkage
groups of the genetic map. Orientation of scaffolds was possible when two or more
separated genetic markers were present on the same scaffold. All these data were
used to generate 11 banana pseudo-chromosomes with 100Ns inserted between
neighbouring scaffolds (Supplementary Fig. 1 and Supplementary Table 4).
Gene prediction. The following resources were integrated to automatically build
Musa acuminata gene models using GAZE30: ab initio gene predictions from
Geneid36, SNAP37 and FGENESH38; Genewise39 alignments of the UniProt40

database; Est2genome41 alignments of full-length cDNAs from six tissue samples
of DH-Pahang and a collection of 6,888,879 monocotyledon messenger RNAs
from the EMBL database and finally Gmorse models42 derived from RNA-Seq
reads (Supplementary Text). MicroRNAs were predicted based on comparison
using the Plant MicroRNA Database (http://bioinformatics.cau.edu.cn/PMRD/).
Identification of integrated pararetrovirus sequences. Viral integrants in the
DH-Pahang genome were detected with a BLASTN analysis using either full-
length BSV sequences or a 540-base-pair fragment of the RT/RNase H region of
the badnaviruses genome (Supplementary Text).
Identification, classification and distribution of Musa transposable elements.
Musa transposable elements were identified based on sequence similarity at the
protein and nucleic-acid levels using BLASTP and TBLASTN43 and by de novo
identification based on transposable-element structural signatures. Repeats from
1,832,094 remaining unassembled reads were characterized with a BLASTN ‘walk-
ing’ approach44. The obtained reference Musa transposable-element library was
used with REPET45 to screen the assembly and quantify repeats (Supplementary
Text). Insertion dates of full-length long terminal repeat retrotransposons were
determined as described in Ma et al.46 with a substitution rate of 9 3 1029 per site
per year, which is twofold higher than that determined for Musa genes by Lescot et
al.15.
Identification of Musa WGDs and comparative genome analyses. For the
identification of Musa WGD, an all-against-all comparison of Musa proteins
was done using the GenomeQuest BLAST package (LASSAP47) and retaining
ten best hits for each gene. Clusters of paralogues composed of at least 20 genes
with a maximal distance of 40 genes between syntenic genes were built with an

in-house perl script, using a single linkage clustering with a Euclidian distance
based on the gene index order in each chromosome. These clusters were refined
using Synmap (http://synteny.cnr.berkeley.edu/CoGe/SynMap.pl) with the
BLASTZ algorithm, an average distance expected between syntenic genes of 10,
a maximum distance between two matches of 30, a minimum number of aligned
gene pairs of 10 and a quota-align ratio of 3 to 3 (Supplementary Text).

For comparative genome analyses, orthologous gene-pairs were identified using
predicted proteomes of M. acuminata, O. sativa (IRGPS/RAP, build 4), Vitis
vinifera (http://www.genoscope.cns.fr/externe/Download/Projets/Projet_ML/
data/12X/annotation/) and Phoenix dactylifera (draft sequence version 3, http://
qatar-weill.cornell.edu/research/datepalmGenome/download.html). Alignments
were performed using BLASTP (e value 1 3 1025) and retaining best hits.
Syntenic clusters of genes were built using a single linkage clustering with a
Euclidian distance. Dot-plots were performed using an in-house perl program
allowing the painting of paralogous and orthologous gene clusters. Circle diagrams
were made with Circos48.

To calculate the number of synonymous substitutions per site (Ks), ClustalW49

alignments of paralogous and orthologous protein sequences were used to guide
nucleic coding sequence alignments with PAL2NAL50. Ks values were calculated
using the Yang–Nielson method implemented in PAML51.
Phylogenomic analysis. To infer the timing of genome duplication events relative
to speciation events, all annotated Musa genes were sorted based on best BLASTP
hit into the gene family clusters circumscribed by Jiao et al.52 and the PlantTribes
database53 (http://fgp.bio.psu.edu/tribedb/), including sequenced eudicotyledons
and monocotyledons, along with transcriptome assemblies for other non-grass
monocotyledons (Supplementary Text). Gene family clusters were queried for
Sorghum18 and Musa orthologues mapping to syntenic blocks, and maximum
likelihood gene trees were estimated for these gene families using the
GTR1GAMMA model of molecular evolution in RAxML54. The estimation of
divergence times was performed on maximum likelihood trees based on
concatenated MAFFT55 alignments for 93 gene families that included only one
gene from each of the sequenced genomes (Supplementary Text).
Comparative analysis of gene families. The Musa proteome was globally com-
pared with O. sativa (RGAP version 6.0), S. bicolor (JGI version 1.4), B. distachyon
(JGI version 1.0), P. dactylifera (draft sequence version 3, http://qatar-weill.
cornell.edu/research/datepalmGenome/download.html) and A. thaliana (TAIR
version 9) proteomes filtered of transposable elements and alternative splicing.
An all-against-all comparison was performed using BLASTP (1 3 10210) followed
by clustering with OrthoMCL56 (inflation 1.5). Analysis of species-specific sets was
made with a Fisher’s exact test (P , 0.0001) on InterPro (version 28) domains. For
analyses of specific gene families, the 36,542 Musa protein sequences were inserted
in the plant proteome clustering of the GreenPhyl database57. Transcription factor
families were mostly retrieved based on InterPro domains, using the IPR2genomes
tool in GreenphylDB57 (Supplementary Text). Kinases and nucleotide-binding site
proteins were retrieved using hidden markov models (hmmsearch version 3) to
search for corresponding Pfam domains (Supplementary Text).
Identification of CNSs. Pan-grass CNSs conserved between rice, sorghum and
Brachypodium were prepared using an automated pipeline58. The obtained 16,978
CNSs were used to query Musa using BLATSN (e value , 0.001) following a
manual or a semi-automated procedure depending on CNS size (Supplemen-
tary Text and Supplementary Fig. 24). The resulting set of CNSs was extensively
analysed using GEvo59 (http://synteny.cnr.berkeley.edu/CoGe/GEvo.pl) and the
MSU Rice Genome Browser60 (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/
rice/) to remove false positives (Supplementary Table 19). Adding rice and
sorghum homeologues, Brachypodium and maize orthologues and Arabidopsis
‘best hit orthologues’ to GEvo panels enabled the identification of 18 CNSs con-
served deeply throughout the plant kingdom.
Transcriptome sequencing. For RNA-Seq analyses (Supplementary Text),
cDNA libraries were sequenced using 76-base length read chemistry in a single-
flow cell on the Illumina GA IIx. Reads were mapped against the automatic
annotated transcripts with SOAPaligner/Soap2 (2.20, http://soap.genomic-
s.org.cn/) and only the unique mapped reads were kept. RNA-seq data were
statistically analysed with the R packages baySeq version 1.6.0 (ref. 61) and
DESeq version 1.5.6 (ref. 62).
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