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Abstract

Background: Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) provide a promising
tool for the detection and fine mapping of quantitative trait loci (QTL) underlying complex agronomic traits. In this
study we explored the genetic basis of variation for the traits heading date, plant height, thousand grain weight,
starch content and crude protein content in a diverse collection of 224 spring barleys of worldwide origin. The
whole panel was genotyped with a customized oligonucleotide pool assay containing 1536 SNPs using Illumina’s
GoldenGate technology resulting in 957 successful SNPs covering all chromosomes. The morphological trait “row
type” (two-rowed spike vs. six-rowed spike) was used to confirm the high level of selectivity and sensitivity of the
approach. This study describes the detection of QTL for the above mentioned agronomic traits by GWAS.

Results: Population structure in the panel was investigated by various methods and six subgroups that are mainly
based on their spike morphology and region of origin. We explored the patterns of linkage disequilibrium (LD)
among the whole panel for all seven barley chromosomes. Average LD was observed to decay below a critical
level (r2-value 0.2) within a map distance of 5-10 cM. Phenotypic variation within the panel was reasonably large
for all the traits. The heritabilities calculated for each trait over multi-environment experiments ranged between
0.90-0.95. Different statistical models were tested to control spurious LD caused by population structure and to
calculate the P-value of marker-trait associations. Using a mixed linear model with kinship for controlling spurious
LD effects, we found a total of 171 significant marker trait associations, which delineate into 107 QTL regions.
Across all traits these can be grouped into 57 novel QTL and 50 QTL that are congruent with previously mapped
QTL positions.

Conclusions: Our results demonstrate that the described diverse barley panel can be efficiently used for GWAS of
various quantitative traits, provided that population structure is appropriately taken into account. The observed
significant marker trait associations provide a refined insight into the genetic architecture of important agronomic
traits in barley. However, individual QTL account only for a small portion of phenotypic variation, which may be
due to insufficient marker coverage and/or the elimination of rare alleles prior to analysis. The fact that the
combined SNP effects fall short of explaining the complete phenotypic variance may support the hypothesis that
the expression of a quantitative trait is caused by a large number of very small effects that escape detection.
Notwithstanding these limitations, the integration of GWAS with biparental linkage mapping and an ever
increasing body of genomic sequence information will facilitate the systematic isolation of agronomically important
genes and subsequent analysis of their allelic diversity.
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Background
Determining the genetic basis of agronomic traits has been
one of the major scientific challenges in the process of
crop improvement . Most of the agronomically important
traits are quantitative, resulting in greater difficulty for dis-
cerning genetic differences underlying the phenotype of
interest. Currently, linkage mapping (analysis) is the most
common approach in plants to detect quantitative trait
loci (QTL) corresponding to complex traits. In linkage
mapping, linkage disequilibrium (LD) is generated by
establishing a population from a cross between two paren-
tal lines. The co-segregation of alleles of mapped marker
loci and phenotypic traits allows the identification of
linked markers. Due to the restricted number of meiotic
events that are captured in a biparental mapping popula-
tion, the genetic resolution of QTL maps often remains
confined, to a range of 10-30 cM [1,2]. Moreover, linkage
analysis can only sample a small fraction of all possible
alleles in a population from which the parents originated.
An alternative approach, association mapping (AM)

known as LD mapping relies on existing natural popula-
tions or designed populations of plants to overcome the
constraints inherent to linkage mapping. LD mapping
exploits ancestral recombination events that occurred in
the population and takes into account all major alleles
present in the population to identify significant marker-
phenotype associations. LD mapping was first introduced
in genetic mapping studies in humans [3,4] and has been
recently considered for plant research. By exploiting non-
random associations of alleles at nearby loci (LD), it is
possible to scoop out significantly associated genomic
regions with a set of mapped markers. Success of map-
ping depends on the quality of phenotypic data, popula-
tion size and the degree of LD present in a population
[5,6]. In general, the power of association studies depends
on the degree of LD between genotyped markers and the
functional polymorphisms. The decay of LD varies
greatly i) between species [7], ii) among different popula-
tions within one species and iii) also among different loci
within a given genome [8,9].
LD mapping is based on two strategies: i) re-sequencing

of selected candidate genes and ii) genome-wide associa-
tion which exploits marker polymorphisms across all chro-
mosomes [10]. Genome-wide association studies (GWAS)
have become increasingly popular and powerful over the
last few years in human and animal genetics. The emer-
gence of more cost-effective, high-throughput genotyping
platforms have rendered AM an increasingly attractive
approach for QTL mapping in plants [11]. In the last few
years, an increasing number of association studies based
on the analysis of candidate genes have been published
(reviewed in [7]). These include e.g. the Dwarf8 [12] and
the phytoene synthase locus in maize [13], flowering time
genes in barley [14], the PsyI-AI locus in wheat [15], the

rhg-1 gene in soybean [16]; and a series of candidate genes
in Arabidopsis [17,18].
Barley (Hordeum vulgare L.) was domesticated in the

Fertile Crescent about 10,000 years ago [19-21]. Today
barley is the fourth most important cereal crop after
wheat, rice and maize. In addition to its agricultural
importance, the barley genome is considered as a model
for other crop species of the Triticeae tribe including
wheat and rye [22,23]. In this regard an ever increasing
repertoire of marker and sequence resources has been
developed for barley which can be efficiently utilized
[24-26]. Over the last few years candidate gene based AM
studies were reported for barley [9,14,27]. GWAS with
dense marker coverage are not yet conducted routinely for
barley, albeit the potential of this approach has been
demonstrated in some pilot studies [28-30].
Inbreeding crops such as barley are characterized by a

high level of population structure caused by the impact of
non random mating and subsequent selection. This is
exemplified by two-rowed and six-rowed barley cultivars
which form distinct subpopulations, because the corre-
sponding breeding programs rely on different progenitors.
The same applies to the subpopulations of spring and win-
ter barley [31]. There are higher chances of occurrence of
type I and type II errors in AM than in biparental QTL
analysis due to the confounding effect of population struc-
ture in the panel [2,32-34] Specific statistical approaches
have been proposed to account for population structure in
AM [35]. Yu et al. [36] described a mixed-linear model
(MLM) approach which performs better than previous
models [37]. Still these models have their individual short-
comings and care needs to be taken in controlling for
population structure and balancing the rate of false posi-
tives and false negatives in the analysis.
In the present study, our main objective was to map

genetic polymorphisms underlying complex agronomic
traits such as heading date (HD), plant height (PHT),
thousand grain weight (TGW), starch content (SC) and
crude protein content (CPC) in spring barley using
GWAS. We studied a diverse spring barley collection
comprising 224 accessions from 52 countries previously
described by Haseneyer et al. [38]. We provide a compre-
hensive overview on population structure and genetic
diversity as well as their effects on GWAS. To study the
dynamics of LD across the seven barley chromosomes we
investigated the patterns of LD decay. Finally, we identify
and locate a substantial number of known and novel
QTL for the traits investigated.

Methods
Association mapping panel
The association mapping panel consists of 224 spring
barley accessions selected from the Barley Core Collec-
tion (BCC) [39] and the barley Genebank collection
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maintained at the IPK Genebank Gatersleben, Germany.
The panel comprises 96 two-rowed and 128 six-rowed
genotypes, and among them 109 accessions originate
from Europe (EU), 45 from West Asia and North Africa
(WANA), 40 from East Asia (EA) and 30 from the
Americas (AM). Most of the accessions are improved
cultivars (149), some accessions are landraces (57) or
breeder’s lines (18). Further information on the germ-
plasm can be obtained from the European Barley Data-
base (EBDB, http://barley.ipk-gatersleben.de/ebdb.php3).
This panel has been considered and described in detail
by Haseneyer et al. [38]. Each accession has been single-
seed descended, selfed for two generations under green-
house conditions and subsequently propagated in the
field.

Phenotypic evaluation
The accessions were planted in a 25 × 15 lattice design
with three replications in the years 2004 and 2005 at the
following locations: Stuttgart (Southwest Germany),
Irlbach (Southeast Germany) and Wohlde (Northern
Germany). Heading date (HD) and plant height (PHT)
were scored in field plots. Thousand grain weight (TGW)
was estimated from sampled grains per plot. Starch con-
tent (SC) and crude protein content (CPC) were estimated
using a near infrared reflectance spectrometer (NIRS)
from ground seed samples from all environments. In order
to convert the nitrogen content to crude protein values,
we considered a factor of 6.25. We followed the methods
described in Naumann and Bassler [40] to estimate the
starch content and nitrogen content. Phenotypic data were
analyzed using REML (Residual Maximum Likelihood)
implemented in GenStat 9 software [41]. Variance compo-
nents were calculated by fitting a mixed linear model
(MLM) to multi-environment data. Heritabilities were
estimated for all traits considering the percentages of
genotypic variance, over the total phenotypic variance
including genotype (G) by environment (E) variance and
error variance components. Phenotypic mean BLUEs (Best
Linear Unbiased Estimates) were estimated taking into
account the GxE variance and were used for association
studies. Further information on phenotypic data can be
obtained from Haseneyer et al. [38].

Genome-wide marker profiling
DNA for SNP genotyping was extracted for each acces-
sion from bulked leaf samples of eight 2-weeks old seed-
lings. A customized oligonucleotide pool assay (IPK-
OPA, unpubl) containing 1536 allele specific oligos was
used to genotype the panel by Illumina’s GoldenGate
technology (Illumina, San Diego, CA). The IPK-OPA has
been mainly built on a selection of markers from two
pilot assays (pOPA1, pOPA2) that are polymorphic
between the two barley cultivars ‘Barke’ and, ‘Morex’.

More than 95% of the 1536 SNP markers of the IPK-
OPA have been included in a barley consensus map [26].
The SNP genotyping was performed at University of
California (Southern California Genotyping Consortium,
UCLA) following the protocol of Fan et al. [42,43]. More
details about the successful SNP markers considered for
GWAS are available as supplemental information (Addi-
tional file 1: Table S1).
Scoring SNP data was done using the Illumina Beadstu-

dio package (Genotyping module 3.2.32; Genome viewer
3.2.9; Illumina, San Diego, CA) that can process the raw
hybridization intensity data and thereby cluster the data.
The normalization procedure implemented in the Bead-
studio genotyping module includes outlier removal, back-
ground correction and scaling. The algorithm included
uses a Bayesian model to assign normalized intensity
values to one of the three possible homozygous and het-
erozygous genotype clusters. Stringent threshold scores
(Call Rate > 0.9 and GenTrain Score > 0.7) were used to
identify ambiguous results. SNPs that failed to show two-
group clustering were strictly excluded from the analysis.
From a total of 1536 SNP markers, 985 markers yielded
good quality genotypic calls. Among the 985 successful
SNP markers only 957 markers are genetically mapped
and we used these 957 markers for our analysis (Addi-
tional file 1: Table S1). Among the 224 accessions in the
panel of genotypes, 12 genotypes performed badly in the
assay (Additional file 2: Table S2). For these 12 genotypes
more than 90% of the SNP markers data is missing, hence
were excluded from subsequent analysis.

Genotypic data analysis and population structure
Polymorphic information content (PIC) values were calcu-
lated for each SNP using Powermarker 3.25. [44]. Major
allele frequency, minor allele frequency (MAF), gene diver-
sity and Nei’s genetic distance (d) [45] were calculated and
a NJ (Neighbor-Joining) dendrogram (data not shown)
based on d was computed. From the 957 SNPs, a final set
comprising 918 SNPs with MAF larger than 0.05 was used
for analysis of population structure, LD and marker trait
associations.
To estimate the number of subgroups in the panel, dif-

ferent methodologies and different software packages were
employed and compared in order to determine the appro-
priate population structure in collection. For the quantita-
tive assessment of the number of groups in the panel, a
Bayesian clustering analysis was performed using a model
based approach implemented in the software package
STRUCTUREv 2.2 [46,47]. This approach uses multi-locus
genotypic data to assign individuals to clusters or groups
(k) without prior knowledge of their population affinities
and assumes loci in Hardy-Weinberg equilibrium. The
program was run with 918 SNP markers for k-values 1 to
15 (hypothetical number of subgroups), with 100000
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burnin iterations followed by 50000 MCMC (Markov
Chain Monte Carlo) iterations for accurate parameter esti-
mates. To verify the consistency of the results we per-
formed 5 independent runs for each k. An admixture
model with correlated allele frequencies was used. The
most probable number of groups was determined by plot-
ting the estimated likelihood values [LnP(D)] obtained
from STRUCTURE runs against k. LnP(D) is the log likeli-
hood of the observed genotype distribution in k clusters
and is an output by STRUCTURE simulation. The k value
best describes the population structure based on the cri-
teria of maximizing the log probability of data or in other
words the value at which LnP(D) reaches a plateau [46].
STRUCTURE results with the SNP marker dataset were
confirmed with the results from STRUCTURE runs using
a set of Diversity Array Technology (DArT) markers
(Pasam et al. unpubl, Additional file 3: Figure S1). In a sec-
ond approach principal coordinate analysis (PCoA) based
on the dissimilarity matrix was performed using DARwin
(Diversity Analysis and Representation for windows) [48].
In a third approach a NJ dendrogram based on Nei’s
genetic distance matrix was constructed. The substructure
in the collection using different methodologies was com-
pared and the final k value using STRUCTURE was ascer-
tained. For this k value, the Q-matrix (population
membership estimates) was extracted from STRUCTURE
runs. This matrix provides the estimated membership
coefficients for each accession in each of the subgroups.

Linkage disequilibrium analysis
The extent of LD effects both the number of markers
required for GWAS and the resolution of mapping the
trait. LD is in many cases influenced by population struc-
ture resulting from the demographic and breeding history
of the accessions. Genome-wide LD analysis was per-
formed among the panel and subgroups by pair wise com-
parisons among the SNP markers using HAPLOVIEW
[49]. LD was estimated by using squared allele frequency
correlations (r2) between the pairs of loci [50]. The loci
were considered to be in significant LD when P < 0.001,
the rest of r2 values were not considered as informative.
The pattern and distribution of intra-chromosomal LD
was visualized and studied from LD plots generated for
each chromosome by HAPLOVIEW. To investigate the
average LD decay in the whole genome among the panel,
significant intra-chromosomal r2 values were plotted
against the genetic distance (cM) between markers. The
smothering second degree LOESS curve was fitted using
GENSTAT [41]. A critical value for r2 was estimated by
square root transforming of unlinked r2 values to obtain a
normally distributed random variable, and the parametric
95th percentile of that distribution was taken as a critical
r2 value [32]. Unlinked r2 refers to the r2 between the

marker loci with a genetic distance greater than 50 cM or
on independent linkage groups.

Association analysis
Different statistical models were used to calculate P-values
for associating each marker with the trait of interest, along
with accounting for population structure to avoid spurious
associations by TASSEL v.2.1 (http://www.maizegenetics.
net). We followed the formula y = Xb+M + Zu + e, where
y is a response vector for phenotypic values, b is a vector
of fixed effects regarding population structure, a is the
vector of fixed effect for marker effects, u is the vector of
random effects for co-ancestry and e is the vector of resi-
duals. X can be either the Q-matrix or the PCs from Prin-
cipal Component Analysis (PCA), M denotes the
genotypes at the marker and Z is an identity matrix. Six
models comprising both general linear models (GLM) and
mixed linear models (MLM) were selected to test the mar-
ker-trait-associations (MTA). Results were compared to
determine the best model for our analysis. PCA was con-
ducted with TASSEL. The first ten significant PCs
explained 43% of the cumulative variance of all markers. A
kinship matrix (K-matrix), the pair-wise relationship
matrix which is further used for population correction in
the association models was calculated with 918 SNP mar-
kers using TASSEL [51]. The following models were
tested: i) Naive model: GLM without any correction for
population structure; ii) Q-model: GLM with Q-matrix as
correction for population structure; iii) P-model: GLM
with PCs as correction for population structure; iv) QK-
model: MLM with Q-matrix and K-matrix as correction
for population structure; v) PK-model: MLM with PCs
and K-matrix as correction for population structure and
vi) K-model: MLM with K-matrix as correction for popu-
lation structure [35,36,52,53]. All SNP markers were re-
mapped by association mapping to determine the mapping
resolution of the panel as suggested by [24]. The critical
P-values for assessing the significance of MTAs were cal-
culated based on a false discovery rate (FDR) separately
for each trait [54], which was found to be highly stringent.
Considering the stringency of the model used for account-
ing for population structure, most of the false positives
were inherently controlled. Thus, we considered a more
liberal approach as proposed by Chan et al. [55] for deter-
mining the threshold level for significant MTAs. It was
suggested that the bottom 0.1 percentile distribution of
the P-values can be considered as significant, which in our
analysis resulted in threshold levels of 0.05 to 0.09 for indi-
vidual traits. Alternatively, as a compromise between the
two approaches an arbitrary threshold P-value of 0.03 was
used for all traits and all models. This rather rough esti-
mate was obtained by arranging-log10 P-values in a des-
cending order, and the value at which the curve starts to
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flatten is determined as the threshold value. All association
models with all traits were re-analyzed using GENSTAT
[41] to check for any discrepancy.

Results
Phenotypic data
Large phenotypic variation was observed for all traits.
Outliers in the data were identified based on the residuals
derived from the data of all environments and were
removed from further analysis. For the trait heading date,
data from year 2004 was excluded from the analysis due
to differences in scoring this trait between the individual
locations. Variance components were calculated by
REML. The results confirmed that genotypic variance
was significant for all traits (P < 0.001). GxE interactions
were also significant (P < 0.001) but represented only a
small fraction of the total variance. Heritabilities ranged
between 0.90-0.95 indicating the robustness of the data
and the low error rate. Year-wise means, ranges and her-
itabilities over all environments for the traits HD, PHT,
TGW, SC and CPC are presented in Table 1 and their
frequency distributions are illustrated in Additional file 4:
Figure S2. The correlation exhibited by the agronomic
traits between each other is outlined in Table 2. The
traits SC and CPC are highly correlated (-0.7) and other
traits showed moderate to weak correlation among each
other. PHT was shown to be weakly correlated with HD
and also with SC and CPC. TGW is found to be posi-
tively correlated with SC and negatively correlated with
CPC. Substantial phenotypic differences were reported
between two-rowed and six-rowed genotypes. The means
for all traits were significantly different between the two
groups (Additional file 5: Table S3). The variation
observed was larger for all traits in six-rowed barleys
than in two-rowed barleys. The greatest influence of
spike morphology (two-rowed vs. six-rowed) on phenoty-
pic variation was seen for TGW, whereas the greatest
influence of population structure was observed for PHT
(Additional file 6: Table S4).
Best Linear Unbiased Estimates (BLUEs) of genotypic
means were calculated from the fixed genotypic effects
to avail unbiased mean estimates. Using Best Linear
Unbiased Predictors (BLUPs) is less suitable as it would
cause double shrinking [56]. Henceforth we used BLUEs

in our further analysis. However, comparison of both
BLUPs and BLUEs revealed very high concordance
between both estimates, which is a direct consequence
of the high heritabilities (Additional file 7: Figure S3).

Population structure and genetic diversity
From the high quality 985 SNPs, 957 markers had been
genetically mapped and therefore were considered for
this study. Of these, 39 SNPs (4%) were excluded because
of a MAF below 0.05. Of the remaining SNPs, the major-
ity revealed a MAF between 0.1 to 0.5 (Figure 1). These
SNP markers were distributed over all seven chromo-
somes with an average spacing of 1.18 cM. The distribu-
tion of SNP markers is not exactly uniform and varies
within and among chromosomes with a minimum of 105
markers on chromosome 4H and a maximum of 164
markers on 5H (Table 3). Diversity statistics computed
for each SNP are summarized in Additional file 8: Table
S5. PIC values for SNPs ranged from 0.09 to 0.5 with an
average of 0.30. Most of the markers (726) displayed PIC
values exceeding 0.25, demonstrating the informativeness
of these markers in our panel. The average PIC values of
the markers on each chromosome ranged between 0.29
(5H) to 0.33 (6H). The mean gene diversity value for the
whole panel was 0.39 and spread within a range of 0.09
to 0.5. It was reported in several studies that the stratifi-
cation of barley cultivars is concordant with spike mor-
phology, mainly as a result of breeding history [57,58].
Therefore, similar molecular diversity statistics were gen-
erated separately for two-rowed and six-rowed barley
groups within our panel and for the six subgroups.
Observed mean PIC values are higher for the six-rowed
group (0.31) than for two-rowed barleys (0.27). Similarly,

Table 1 Estimation of mean, minimum (Min), maximum (Max) and heritabilities (h2) of all traits

Trait 2004 Min Max Mean 2005 Min Max Mean h2(%) GxE

Plant height (PHT) 20 120 77.04 30 120 73.69 92.82

Heading date (HD) * * * 56 81 68.26 92.5

Thousand grain weight (TGW) 17.77 67.23 44.92 20.1 62.6 42.43 92.9

Starch content (SC) 40.8 64.58 56.85 44.01 65.31 56.91 96.3

Protein content (CPC) 9.74 25.74 14.88 10.35 25.18 14.90 92.1

Heritabilities were calculated on entry mean basis.

Table 2 Correlation coefficients among different traits
estimated across all environmental data

HD PHT CPC SC

HD

PHT 0.29**

CPC -0.43** -0.25**

SC 0.43** 0.17* -0.76**

TGW 0.04 -0.09 -0.30** 0.33**

**highly significant at P < 0.001, * significant at P < 0.01, rest are not
significant
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average gene diversity estimated was higher in six-rowed
(0.38) than in two-rowed accessions (0.33).
The population structure in the panel of 212 barley

accessions was analyzed using 918 SNP markers and a
model based approach in STRUCTURE. The LnP(D)
appeared to be an increasing function of k for all the
values observed. But the most significant increase of
LnP(D) was observed when k was increased from 1 to 2
(Figure 2). At k = = 2 the panel is clearly categorized
into two-rowed and six-rowed barleys with few excep-
tions. The two main groups were further divided yield-
ing six subgroups in total as LnP(D) values nearly
reached a plateau at k = 6. Hence, we chose a value of k
= 6 for our analysis as minimum number of groups pre-
sent in the panel. Different values of k are still possible
but will not qualitatively affect the results. An accession
was assigned to a subgroup if at least 50% of the gen-
ome information was estimated to belong to one group.
The accessions clustered into groups mostly according
to their spike morphology and their geographical ori-
gins, as was demonstrated already by Haseneyer et al.

[38]. The six groups are defined as: Group 1 (G1): 24
six-rowed barleys mostly from AM and WANA; G2: 31
accessions mostly six-rowed barley from EA; G3: 31 acces-
sions mostly six-rowed barleys from EU; G4: 24 accessions
mostly two-rowed from EU; G5: 79 accessions mostly
two-rowed barleys from EU; G6: 23 accessions mostly
two-rowed from WANA and AM (Figure 3). The domi-
nant stratification of the population according to spike
morphology is confirmed by PCoA (Additional file 9:
Figure S4) and NJ dendrogram (not shown). In the PCoA,
it is obvious that the primary axis separates the accessions
based on row type and further grouping is related to the
region of origin. Overall, the clustering of accessions was
consistent among various methods and we further
explored the genetic diversity within these groups. The
summary statistics for each group with 918 SNP markers
is reported in Table 4. Observed gene diversity values ran-
ged from 0.27 in G5 to 0.35 in G1; PIC values ranged
from 0.22 in G5 to 0.29 in G1. Pairwise genetic distances
ranged from 0.006 to 0.628, with an overall mean of 0.39.
The average overall genetic distance between groups has
been calculated, and the largest genetic distance of 0.36
was observed between the groups G2 (six-rowed, EA) and
G5 (Two-rowed, EU). Similarly G4 (six-rowed, EU) and
G5 (six-rowed, EU) are found to be closely related groups
with an average genetic distance of 0.17 (Table 5).

Linkage disequilibrium
LD analysis was performed using 918 SNPs for i) entire
panel, ii) separately for two-rowed and six-rowed bar-
leys, and iii) each of the six subgroups. Pairwise LD was
estimated using the squared-allele frequency correlations
(r2) and was found to decay rapidly with the genetic dis-
tance. We studied different aspects of LD in our panel
and observed that LD varies along the chromosomes
with regions of high LD interspersed with regions of

Figure 1 SNP marker efficiency in the panel. Percentage of
distribution of MAF of SNPs in the panel. SNPs with MAF < 0.05
were excluded from the analysis

Table 3 SNP coverage and distribution across all
chromosomes

Chromosome cM Markers Marker coverage PIC

1H 139.79 117 1.19 0.31

2H 156.72 146 1.07 0.29

3H 173.17 151 1.15 0.32

4H 123.29 105 1.17 0.32

5H 195.42 164 1.19 0.29

6H 129.38 119 1.09 0.33

7H 166.56 116 1.44 0.30

Total 1084.33 918 1.18 0.31

Average PIC values for all SNPs on each chromosome are represented.

Figure 2 STRUCTURE results using 918 SNPs. Log probability
data (LnP(D)) as function of k (number of clusters) from the
STRUCTURE run. The plateau of the graph at K = 6 indicates the
minimum number of subgroups possible in the panel
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Figure 3 Population sub-structuring in the panel. Bayesian clustering of the 212 barley accessions into six defined groups (G1, G2, G3, G4,
G5, G6) based on 918 SNP markers. The number of accessions per group and their respective geographical origin and row type is presented

Table 4 Summary of molecular diversity and polymorphism information for the whole panel and all the subgroups

Group Average major allele frequency No. genotypes Gene diversity PIC

Whole panel 0.6978 212 0.3904 0.3079

2-rowed group 0.7551 122 0.3325 0.2714

6-rowed group 0.7064 90 0.3852 0.3108

G1 0.7359 24 0.3551 0.2903

G2 0.7933 31 0.2844 0.2338

G3 0.7773 31 0.3060 0.2497

G4 0.7746 24 0.3106 0.2536

G5 0.7976 79 0.2791 0.2297

G6 0.7547 23 0.3296 0.2681

PIC values are given as the mean values of the corresponding marker partitions.
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low LD (Additional file 10: Figure S5). A critical value of
r2, or basal LD, was calculated from inter-chromosomal
LD analysis and is estimated to be 0.2 beyond which LD
is assumed to be caused by genetic linkage. The point at
which the LOESS curve intercepts the critical r2 is
determined as the average LD decay of the population.
Based on these criteria the intra-chromosomal LD
decayed between 5- 10 cM for individual chromosomes
and average LD decay of the whole genome was
observed to be at 7 cM (Figure 4). Extensive variability
in the magnitude of r2 at a given genetic distance was
detected reflecting the wide local variation in the extent
of LD across the chromosomes. The correlation between
r2 and marker distance was found to be significantly
negative (r = -0.40) for markers below a distance of
10 cM, whereas marker pairs with larger distance
showed no significant correlation with r2.
Significant intra-chromosomal r2 values (P < 0.001) ran-
ged from 0.02 to 1 with an average of 0.12 for the whole
panel. Among all significant loci in LD, 13.7% of the loci
are above the critical r2 value of 0.2 in the whole panel.

Pairs of loci are classified into 4 groups based on the
inter-marker genetic distance: 0-10 cM (tightly linked
markers), 11-20 cM (moderately linked markers), 21-50
(loosely linked markers) and > 50 (independent markers)
[59]. The percentages of significant loci pairs and mean
r2 values for all classes of markers in the whole panel and
different subgroups are presented in Table 6. Among all
loci pairs, only 39.4% were in significant LD in the whole
panel. The percentage of significant loci pairs decreased
with the distance between loci; 62.2% of the tightly linked
markers showed significant r2. Similarly 45.1%, of the
moderately linked markers 38.3% of the loosely linked
markers and 28.5% of independent markers were in sig-
nificant LD. The portion of r2 values exceeding the basal
LD level of 0.2 decreased from 33.7% in the group of
tightly linked markers to 10% for moderately linked mar-
kers to less than 4% for independent markers. Mean r2

values decreased from 0.2 for closely linked marker loci
to 0.08 for unlinked marker pairs. All loci pairs being in
complete LD are spaced at genetic distance < 5 cM.

Patterns of linkage disequilibrium within subgroups
At the intra-chromosomal level, mean r2 values for two-
rowed and six-rowed barley groups ranged between 0.18
and 0.17, which is slightly more than the mean r2 of whole
panel. The percentages of significant r2 values were higher
in the two-rowed than in the six-rowed subgroup for all
classes of marker pairs except for the independent mar-
kers. This pattern is also similar to LD values above the
basal level of 0.2, and a slightly slower LD decay was
observed for two-rowed barley compared to the group of
six-rowed types and to the whole panel. Similarly, the
mean r2 values were estimated for individual subgroups
where they ranged from 0.3 (G5) to 0.49 (G4).
The LD decay in the subgroups was much slower than

in the whole panel. In Figure 5, binned r2 values are
mapped against the recombination distance (cM) across
the genome. In the whole panel the average LD decays
below a basal level (0.2) within 5 cM, while in the two-
rowed and six-rowed groups the basal level is reached
between 10-15 cM and with LD in six-rowed barley decay-
ing faster than in two-rowed barley. Within G5 LD decays
to the basal level within 20-25 cM, while it does not reach
the basal level in the remaining subgroups (G1,2,3,4,6).
Average LD decay graphs for each group showed different
patterns. Specifically, in the subgroups G4 and G5 at dis-
tances 45 and 74 cM we observed larger LD peaks. Scruti-
nizing these peaks revealed that high LD in these regions
was caused by markers with low allele frequencies. The
consequence of the reduced population size of the indivi-
dual subgroups is that the presence of a solitary allele in
single accession already might show a MAF above the cri-
tical threshold. Varying patterns of LD decay in different
sub-populations are likely reflecting their breeding

Table 5 Estimation of average genetic distance between
different groups

Group G 1 G 2 G 3 G 4 G 5

G 2 0.24

G 3 0.24 0.30

G 4 0.27 0.30 0.29

G 5 0.31 0.36 0.35 0.17

G 6 0.21 0.24 0.27 0.21 0.26

Figure 4 Intra-chromosomal LD (r2) decay of marker pairs over
all chromosomes as a function of genetic distance (cM). The
horizontal line indicates the 95th percentile distribution of unlinked
r2. The LOESS fitting curve (red line) illustrates the LD decay
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Table 6 LD overview for the whole panel and the subgroups of two-rowed and six-rowed barley

Total pairs % significant Significant pairs Mean r2 Pairs in complete LD % of pairs in LD > 0.2 Mean of r2> 0.2

Whole panel total 62222 39.4 24567 0.12 59 13.72 0.36

0-10 cM 10602 62.2 6554 0.20 59 33.70 0.42

11-20cM 8028 45.1 3626 0.10 0 10.21 0.29

21-50 cM 19066 38.3 7310 0.09 0 8.40 0.27

> 50 cM 24526 28.5 7077 0.08 0 4.00 0.25

2-rowed total 48803 21.6 10544 0.18 94 23.74 0.43

0-10 cM 8183 50.0 4098 0.29 94 48.00 0.48

11-20cM 6244 29.9 1869 0.13 0 13.31 0.30

21-50 cM 15066 17.2 2601 0.12 0 9.59 0.28

> 50 cM 19310 10.2 1976 0.10 0 3.81 0.26

6-rowed total 58356 20.2 11801 0.17 95 22.40 0.36

0-10 cM 9947 36.8 3661 0.24 95 40.37 0.43

11-20cM 7439 21.1 1569 0.14 0 18.26 0.27

21-50 cM 17768 16.9 3016 0.14 0 15.04 0.27

> 50 cM 23202 15.3 3555 0.13 0 12.14 0.25

LD statistics are given for the total number of locus pairs and for different marker linkage classes (for details see text).
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histories [1] and may impinge on the QTL mapping reso-
lution of the panel.

Evaluation of the association panel
All 918 SNPs were re-mapped using an LD approach.
A model with kinship accounting for population structure
was used for validating the genetic map position of the
markers. We used each marker information as an indivi-
dual trait and ran the analysis with the remaining SNPs to
find the most significantly associated markers. The map
distance between the target marker in question and the
most highly associated marker was used to evaluate the
resolution of the panel. More than 85% of the SNP markers
had their genetic map position within 0-10 cM distance of
their original map position and the majority of them re-
mapped at the same position (Figure 6). This re-mapping
of markers shows that the resolution of QTL captured
by AM approach in our panel will be within a range of
5-10 cM.

Association analysis
Comparison of models
We tested several models to detect associations between
SNP markers and agronomic traits. Owing to the com-
plexity and the considerable amount of population struc-
ture present in our panel, we observed numerous spurious
associations when using the naive (simple) model for AM.
Hence, we assessed the usefulness of various linear models
to account for population structure by comparing their
ability to reduce the inflation of false positive associations.
To this end ranked P-values from GWAS were plotted in
a cumulative way for each model by using spike morphol-
ogy as phenotypic trait (Figure 7). As demonstrated by
Kang et al. [53] the distribution of P-values ideally should

follow a uniform distribution with less deviation from the
expected P-values. The models QK, PK and K showed a
good fit for P-values, while the other models were charac-
terized by the excess of small P-values which is tanta-
mount to an abundance of spurious associations. This is
particularly obvious in the case of the “naive” model,
where nearly half of the P-values are smaller than 0.01. On
the other hand, the K-model performed similar to the PK
and QK model in displaying a highly uniform distribution

Figure 6 Evaluating the mapping resolution of the panel.
Distribution of SNPs according to their re-mapped distances using
the K-model of genome-wide association approach. The group
‘identical’ refers to the SNPs that mapped at exactly the same
position and the group ‘0’ refers to the SNPs that mapped within a
distance of 0.01 to 0.99 cM

Figure 7 Comparison of different GWA models. Cumulative
distribution of P-values computed from 918 SNPs and row-type
phenotype for different association models are presented. The more
uniform the distribution of P-values, the better is the model

Figure 5 Comparison of LD patterns and LD decay in the
whole panel and subgroups. Mean r2 values are plotted against
the genetic distance for different groups
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of P-values and at the same time requiring less computa-
tional time. Irrespective of the model, major marker trait
associations were constantly detected. However, the more
stringent the model was the less spurious background
associations were detected. All models considered for
GWAS are presented for the trait spike morphology
(Additional file 11: Figure S6). For all other traits only
results from the K-model will be presented and discussed.
Barley spike morphology (row type)
Apart from comparing different AM models, we aimed
to examine the spike morphology trait as a proof of
concept for GWAS and to evaluate the resolution of the
association panel. According to its spike morphology
barley is classified as two-rowed and six-rowed types
and the genes for this trait have been well documented
with some of them already cloned [29,30,60]. We scored
the row type character in the panel and considered 918
markers for AM using all models. A marker trait asso-
ciation was considered when the marker main effect was
significant at 0.03 [-log10 (0.03) = 1.5]. This results in a
total of 34 markers that are significantly associated with
the trait row type by using the K-model. (Additional file
11: Figure S6). The results are congruent with previous
row type studies (see Figure 8).
Heading date
Thirty-four markers were found to be significantly asso-
ciated with heading date (HD). These were grouped into
19 QTL located on all chromosomes. Significant marker
trait associations within a genetic distance of 5-10 cM
are delineated into a single QTL. Chromosome 2H har-
bors the maximum number of markers associated with
the trait (Figure 9a). Some of these association results
with the SNP markers effectively correspond to genomic
regions of previously mapped flowering time QTL.
These include genomic regions of various prominent

flowering pathway genes like Ppd-H1, HvFT1, HvCO1
and HvCO3 (see Table 7).
Plant height
Thirty-two markers displayed significant associations
with plant height (PHT). These markers detected 19
QTL (Table 8). Except for chromosome 1H, significantly
associated markers were found on all chromosomes
with the majority located on 2H and 3H (Figure 9b).

Thousand grain weight
Thirty-six markers yielding 21 QTL were significantly
associated with Thousand Grain Weight (TGW, Figure
9c). Markers significantly associated with the trait were
present on all chromosomes. As expected some of the
TGW related QTL overlapped with QTL for spike mor-
phology. The markers SNP56, SNP215, SNP385 and
SNP458 are co-localized to the same region as Vrs3,
Vrs1, Vrs4 and Int-c genomic regions (Table 9).
Starch content
Thirty-five markers were found to be significantly asso-
ciated with the trait Starch Content (SC). These markers
formed a total of 25 QTL (Figure 9d). Significantly asso-
ciated markers for starch content were present on all
chromosomes. Similar to TGW markers corresponding
to the Vrs3 region (SNP56 & SNP66) are significantly
associated with starch content. Several significant mar-
kers, co-localized with previously mapped genes and
QTL for SC (Table 10).
Protein content
We found thirty-four markers to be significantly asso-
ciated with crude protein content (CPC). These markers
detected a total of 23 QTL (Figure 9e) and were distrib-
uted over all chromosomes. Some of the QTL for pro-
tein content overlapped with the QTL regions identified
for CPC (Table 11).

Discussion
In the present study we describe the application of
whole genome association mapping in a panel of diverse
spring barley genotypes for agronomic traits. For each
of the analyzed traits we identified 19 to 25 QTL. A
substantial portion of the derived QTL locations are
congruent with previously identified QTL in various
biparental mapping populations (Tables 7, 8, 9, 10, 11).
GWAS are strongly influenced by the quality of the phe-
notypic data [79]. In the present study heritabilities for
all traits exceeded 0.9 and phenotypic means reflected a
broad variation in the panel. The observed differences
for two-rowed and six-rowed groups were expected due
to their different breeding histories and the pleiotropic
effects of spike morphology (Additional file 5: Table S3).
Phenotypic variation observed for all traits is higher in
the six-rowed group than in the two-rowed group,
which is in accordance with the higher genetic diversity

Figure 8 GWA scan for the trait row type using 918 SNPs with
K-model for statistical correction of population structure.
Vertical axis represents -log10(P) values of the P-value of the marker
trait association. SNPs in the vicinity of the genes vrs1. vrs2. vrs3, vrs4
and int-c are marked with arrows
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of this subgroup (Table 4). A more detailed analysis of
population structure revealed six subgroups, which were
mostly defined by spike morphology and geographical
origin, both of which are known to impinge on the
expression of agronomic traits.

Genetic diversity and population structure
Arguably an association mapping panel should suffice
both phenotypic and molecular diversity for the outcome
of reliable association results. Owing to the availability of a
large number of mapped SNP markers that can be interro-
gated in a multiparallel manner [26], we were able to
achieve a high marker coverage amounting to 1 marker
per 1.18 cM. The average PIC (0.30) and Gene diversity
(0.33) values observed in this panel of accessions are com-
parable with the results in previous studies using bi-allelic
markers. PIC values differed among chromosomes and
among different germplasm subgroups (Tables 3 & 4).
Among all chromosomes, the highest average PIC value
(0.33) was detected for chromosome 6H-which corre-
sponds to the observations made by Rostoks et al. [24] in a
set of European barley cultivars. We determined the popu-
lation structure in our panel by implementing various

approaches (STRUCTURE, PCoA and NJ-dendrogram)
and found similar results. Several previous studies e.g.
Maliysheva-Otto et al. [57], Rostoks et al. [24], Zhang et al.
[58] and Hamblin et al. [80] have shown that growth habit,
spike morphology and geographical origin are the major
factors that mirror population structure in barley. Since
the present study has been restricted to spring barley,
spike morphology and geographical origin were the funda-
mental determinants for population substructuring (G1 to
G6) (Figure 3). The 55 landrace accessions included in this
panel were distributed among all groups. The subgroups
G1, G2 and G3 are mainly six-rowed barleys and the sub-
groups G4, G5 and G6 include mainly two-rowed barleys.
Two-rowed barleys in the panel are more closely related
to each other and less diverse than the six-rowed barleys,
which is in contrast to the findings of Zhang et al. [58] for
Canadian germplasm. While in our panel two-rowed bar-
leys even outnumbered the six-rowed accessions, the rea-
son for their limited diversity might be that the majority
originated from Europe. The geographical distribution of
the accessions has a major influence on the diversity of
alleles sampled in the population [57]. In Europe, two-
rowed barley is mainly grown as raw material for malt

Figure 9 GWA scans for traits HD (9a), PHT (9b), TGW (9c), SC (9 d) and CPC (9e) using 918 SNPs and the K-model. Vertical axis
represents -log10(P) values of the P-value of the marker trait association. The peaks above minimum threshold of 1.5 (P-value = 0.03) can be
considered as significantly associated
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production. Malting quality is a quantitative trait. The use
of a limited number of principal progenitors in the corre-
sponding breeding programs has resulted in the reduction
of genetic diversity and in the concomitant formation of a
distinct subpopulation as it is seen in our present panel
[81].

LD configuration and consequences
The resolution of LD mapping depends on the extent of
LD across the genome and the rate of LD decay with
genetic distance [82,83]. Genome-wide LD studies for
barley have been previously reported in various popula-
tions using different molecular markers such as AFLP,

SSR and DArT [57,58,84], with few studies, however,
relying on more than 1000 markers. In our panel of
spring barley accessions of worldwide origin, intra-chro-
mosomal whole genome LD decays below the critical r2-
value (0.2) within a genetic distance of 5 cM. It needs to
be kept in mind that this is an average value, which sum-
marizes substantial intra-chromosomal LD variation. The
extent of intra-chromosomal LD for different chromo-
somes in our panel ranges from 5-10 cM with varying
patterns along each chromosome (Additional file 10:
Figure S5). Previous studies found various levels of LD
decay in different barley populations [9,29,83] and among
different chromosomes [24]. The LD decay was more

Table 7 GWAS results for trait heading date

SNP Chr Position MAF P-value -log10(P) R2 (%) Effect QTL Reference QTL Literature

SNP111 1H 128.14 0.19 0.0032 2.49 0.63 -2.51 QTL1_HD HvFT3 [61]

SNP119 1H 138.92 0.23 0.0198 1.70 0.33

SNP129 2H 27.29 0.37 0.0099 2.00 0.38

SNP130 2H 28.44 0.36 0.0080 2.10 0. 39 -1.29 QTL2_HD PpdH1 [62]

SNP133 2H 31.02 0.38 0.0280 1.55 0.39 [61]

SNP135 2H 33.73 0.10 0.0262 1.58 0.51

SNP142 2H 41.66 0.27 0.0096 2.02 0.40

SNP148 2H 53.53 0.34 0.0043 2.37 0.47 -1.37 QTL3_HD

SNP170 2H 63.53 0.32 0.0007 3.10 0.88

SNP174 2H 63.53 0.41 0.0011 2.96 0.68

SNP177 2H 63.53 0.32 0.0013 2.89 0.55 QTL4_HD HvFT4/eam6 [61,63,64]

SNP173 2H 63.53 0.33 0.0033 2.48 0.53

SNP183 2H 66.83 0.44 0.0265 1.58 0.39 -2.32

SNP191 2H 71.12 0.44 0.0043 1.0061 0.0012

SNP196 2H 73.04 0.10 0.0061 2.21 0.65 QTL5_HD eps2 [62]

SNP199 2H 73.75 0.14 0.0012 2.92 0. 49 2.53

SNP242 2H 115.78 0.39 0.0207 1.68 0. 54 -1.98 QTL6_HD

SNP284 3H 8.23 0.24 0.0111 1.95 0. 42 -1.45 QTL7_HD

SNP340 3H 59.89 0.35 0.0047 2.33 0. 38 1.80 QTL8_HD HvGI [61]

SNP520 4H 82.42 0.32 0.0198 1.70 0.47 -1.15 QTL9_HD

SNP543 4H 123.29 0.26 0.0024 2.62 0.67 -1.59 QTL10_HD

SNP559 5H 39.97 0.46 0.0146 1.84 0.32 -1.20 QTL11_HD HvCO3 [65]

SNP630 5H 100.28 0.20 0.0203 1.69 0.58

SNP635 5H 102.06 0.13 0.0278 1.56 0. 34 -2.02 QTL12_HD

SNP636 5H 103.92 0.28 0.0278 1.56 0. 35

SNP639 5H 108.18 0.38 0.0236 1.63 0.53

SNP728 6H 28.39 0.43 0.0132 1.88 0.28 -1.43 QTL13_HD

SNP778 6H 60.23 0.49 0.0306 1.51 0. 37 -2.15 QTL14_HD

SNP829 6H 124.85 0.33 0.0281 1.55 0. 37 1.52 QTL15_HD

SNP854 7H 37.55 0.36 0.0060 2.22 0.57 2.50 QTL16_HD HvFT1 [61,63]

SNP855 7H 38.32 0.35 0.0009 3.01 0.54

SNP875 7H 68.46 0.06 0.0180 1.74 0. 48 -2.33 QTL17_HD

SNP908 7H 84.92 0.35 0.0266 1.58 0. 37 1.66 QTL18_HD HvCO1 [61,65]

SNP921 7H 104.78 0.35 0.0131 1.88 0.59 -1.79 QTL19_HD

Significant markers associated for heading date with K-model, corresponding MAF, P value of association, variance explained by marker (R2), effect of the most
significant marker within the QTL interval, name of the QTL, and the reference QTL or gene from literature.
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rapid in the study of Comadran et al. [85] probably due
to the inclusion of landraces in the collection. Caldwell et
al. [9] also showed that LD decays more rapidly in barley
landraces compared to elite barley cultivars. Less exten-
sive LD beyond 10 cM has been found in our panel, as
the majority of significant LD values above the basal level
(33.7%) are due to tightly linked markers. Significant
inter-locus LD values of unlinked markers (4%) may be
the result of population structure (Table 6). We found
some closely linked markers that are in complete Linkage
Equilibrium (LE), while some distantly linked markers
exhibited high LD values. This reflects the dynamic varia-
tion of LD patterns along the chromosomes as it has
been shown in this panel at the sequence level for several
transcription factors [27]. As to the individual subgroups,

the portion of significant r2-values above the basal level
(0.2) is higher within six-rowed than in two-rowed
groups indicating high LD in these groups. Interestingly,
LD in all subgroups extended beyond 30 cM except for
G5 where LD extended to about 20-25 cM (Figure 5).
This is most likely because of the larger population size
of G5 compared to the other subgroups. The extensive
LD observed in the subgroups is probably due to their
decreased population size and a concomitant increase in
relatedness.

Genome-wide association mapping
Despite the advantages of GWAS to pinpoint genetic
polymorphisms underlying agronomic traits, this
approach may suffer from an inflation of false positives

Table 8 GWAS results for trait plant height

Marker Chr Position MAF P-value -log10(P) R2 (%) Effect QTL Reference QTL Literature

SNP122 2H 8.57 0.13 0.0016 2.80 0.94 -5.64 QTL1_PHT

SNP136 2H 33.74 0.35 0.0138 1.86 0.54

SNP137 2H 38.03 0.35 0.0044 2.36 0.84 -5.23 QTL2_PHT Ph2 [66]

SNP168 2H 59.21 0.16 0.0229 1.64 0.46

SNP171 2H 63.53 0.10 0.0155 1.81 0.51 6.73 QTL3_PHT HT (marker:B15c) [67]

SNP175 2H 63.53 0.10 0.0155 1.81 0.51

SNP199 2H 73.75 0.14 0.0224 1.65 0.49 4.72 QTL4_PHT sdw3 [68]

SNP200 2H 74.37 0.25 0.0162 1.79 0.54

SNP254 2H 130.01 0.20 0.0117 1.93 0.56 -4.57 QTL5_PHT QHt.StMo-2H.2 [69]

SNP256 2H 131.77 0.28 0.0175 1.76 0.5

SNP295 3H 36.49 0.13 0.0124 1.91 0.55

SNP303 3H 43.23 0.23 0.0083 2.08 0.61 -5.57 QTL6_PHT QHt.HaMo-3H [67,69]

SNP304 3H 46.31 0.35 0.0141 1.85 0.54

SNP312 3H 52.50 0.25 0.0002 3.55 1.15

SNP313 3H 52.50 0.42 0.0220 1.66 0.48 -5.80 QTL7_PHT uzu Grain genes database

SNP404 3H 126.27 0.39 0.0129 1.89 0.55 4.11 QTL8_PHT sdw1/denso [70,71]

SNP406 3H 127.10 0.37 0.0061 2.21 0.65

SNP427 3H 155.09 0.06 0.0120 1.92 0.56 -2.68 QTL9_PHT

SNP429 3H 162.15 0.06 0.0053 2.28 0.75

SNP519 4H 80.79 0.18 0.0306 1.51 0.4 3.70 QTL10_PHT QHei.pil-4H.5 [72]

SNP575 5H 50.27 0.31 0.0028 2.55 0.8 5.30 QTL11_PHT

SNP588 5H 51.30 0.41 0.0159 1.80 0.5

SNP623 5H 85.93 0.16 0.0164 1.79 0.51 4.95 QTL12_PHT

SNP643 5H 110.26 0.10 0.0133 1.88 0.41 -5.58 QTL13_PHT HT [71]

SNP654 5H 132.63 0.44 0.0235 1.63 0.46 -4.15 QTL14_PHT QHei.pil-5H.1 [72]

SNP722 6H 12.54 0.42 0.0229 1.64 0.41 -5.11 QTL15_PHT

SNP724 6H 16.97 0.30 0.0033 2.48 0.8

SNP757 6H 55.36 0.09 0.0060 2.24 0.64 -8.54 QTL16_PHT

SNP766 6H 55.36 0.32 0.0092 2.04 0.6

SNP831 6H 124.85 0.28 0.0038 2.42 0.74 -4.89 QTL17_PHT

SNP882 7H 73.75 0.45 0.0210 1.68 0.46 -4.23 QTL18_PHT HT [71]

SNP947 7H 144.45 0.41 0.0301 1.52 0.43 -3.77 QTL19_PHT

Significant markers associated for trait PHT, their MAF, P-value of association, variance explained by marker (R2), effect of the most significant marker within the
QTL interval, name of the QTL, and the reference QTL or gene from literature.
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due to population structure [4,52,86]. Several statistical
models to correct for the effect of population structure
have been proposed and tested in previous studies
[37,52,87]. Since we detected a considerable amount of
structure in the present panel we used linear models to
control for population structure and to reduce the false
positive associations. Similar to the previous studies of
comparing GWAS models in allogamous and autoga-
mous species [37,52], our results suggest that K-model,
QK model and PK model performed better than others

(Figure 7). Moreover, for the K-model computational
time is faster and no additional steps like identifying
appropriate population structure (Q-matrix) in the panel
are required. Since in an exploratory analysis mostly
consistent results were obtained for all three approaches,
the K-model was employed in the complete analysis of
all traits to avoid redundancy of data. Still it should be
kept in mind that correcting for population structure
not only reduces the frequency of false positives but
also may entail false negatives in situations where a

Table 9 GWAS results for trait thousand grain weight

Marker Chr Position MAF P-value -log10(P) R2 (%) Effect QTL Reference QTL Literature

SNP48 1H 55.49 0.47 0.0288 1.56 0.34 -2.19 QTL1_TGW

SNP56 1H 61.53 0.26 0.0128 1.92 0.39

SNP62 1H 66.70 0.25 0.0019 2.77 0.70 2.59 QTL2_TGW vrs 3 [60]

SNP68 1H 72.43 0.09 0.0263 1.60 0.37

SNP76 1H 87.62 0.21 0.0225 1.67 0.38

SNP78 1H 88.23 0.26 0.0019 2.79 0.69 2.29 QTL3_TGW

SNP81 1H 92.04 0.28 0.0208 1.70 0.38

SNP137 2H 38.03 0.35 0.0259 1.61 0.40 -1.20 QTL4_TGW

SNP171 2H 63.53 0.10 0.006 2.26 0.50

SNP174 2H 63.53 0.41 0.029 1.55 0.35 2.27 QTL5_TGW QTgw.pil-2H.2 [67,72]

SNP175 2H 63.53 0.10 0.006 2.26 0.50

SNP210 2H 82.75 0.36 0.0081 2.13 0.51

SNP215 2H 86.63 0.32 0.0267 1.59 0.38 1.33 QTL6_TGW vrs1 [60]

SNP245 2H 117.91 0.42 0.0084 2.11 0.51 -1.66 QTL7_TGW

SNP262 2H 139.65 0.31 0.0091 2.07 0.49 -1.62 QTL8_TGW

SNP305 3H 47.09 0.16 0.0225 1.67 0.39 3.01 QTL9_TGW

SNP385 3H 98.49 0.37 0.0131 1.91 0.45 1.94 QTL10_TGW [60]

SNP395 3H 111.42 0.37 0.0302 1.54 0.36 -1.35 QTL11_TGW QTgw.S42-2H.a [73]

SNP458 4H 26.19 0.34 0.0224 1.67 0.40 1.75 QTL12_TGW int-c [29,60]

SNP460 4H 26.66 0.26 0.0034 2.52 0.63

SNP467 4H 40.36 0.33 0.0007 3.21 0.74

SNP469 4H 40.36 0.17 0.0006 3.28 0.82 2.52 QTL13_TGW QTgw.pil-4H.3 [72]

SNP643 5H 110.26 0.10 0.0312 1.52 0.28 -3.00 QTL14_TGW QTgw.pil-5H.2 [72]

SNP663 5H 142.2 0.16 0.0004 3.45 0.87

SNP664 5H 142.2 0.16 0.0002 3.79 1.00 4.47 QTL15_TGW QGwe.TaER-5H.2 [74]

SNP666 5H 142.2 0.15 0.0012 3.00 0.74

SNP709 5H 187.38 0.28 0.0082 2.12 0.50 2.02 QTL16_TGW QTgw.pil-5H.4 [72]

SNP739 6H 43.83 0.08 0.016 1.82 0.43

SNP740 6H 44.77 0.42 0.0041 2.43 0.6

SNP741 6H 44.77 0.41 0.0064 2.23 0.55 -1.91 QTL17_TGW

SNP770 6H 55.94 0.31 0.003 2.58 0.54

SNP851 7H 34.82 0.43 0.0056 2.29 0.52 QGwe.HaTR-

SNP854 7H 37.55 0.36 0.0277 1.58 0.32 -1.88 QTL18_TGW 7H.1 [75]

SNP919 7H 88.65 0.13 0.0164 1.81 0.43 3.01 QTL19_TGW

SNP934 7H 129.91 0.24 0.0048 2.36 0.59 1.84 QTL20_TGW

SNP944 7H 143.68 0.12 0.0315 1.52 0.27 -1.37 QTL21_TGW QTw.HaTR-7H.1 [72]

Significant markers associated for TGW, their MAF, P-value of association, variance explained by marker (R2), effect of most significant marker within the QTL
interval, name of the QTL, and reference QTL or gene from literature.
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character state is strongly correlated with population
structure [28].
In order to confirm the efficiency and resolution of

the panel for association mapping using the range of
available markers, we re-mapped all 918 SNPs using the
K-model. From 918 SNPs, 783 were re-mapped within
10 cM of their original positions. Only 14% of the mar-
kers mapped beyond 10 cM. Among the successfully re-
mapped markers more than 95% markers are within 5
cM distance from the original map position indicating
the mapping resolution of our panel (see Figure 6).

Rostoks et al. [24] has used the same approach to evalu-
ate their barley collection for GWAS with a subset of
markers and successfully mapped 80% of the markers.
To demonstrate the suitability of the panel and the

model for GWAS, we first analyzed spike morphology
(row type) (Figure 8). This trait can be easily scored and
is important from the agronomic and the domestication
point of view. The genetic basis of row type is already
well known and several QTL have been mapped and
genes have been cloned [29,60,88]. We identified 34
marker-trait associations for this trait (Figure 8). Our

Table 10 GWAS results for trait starch content

SNP Chr Position MAF P-values -log10(P) 2 (%) Effect QTL Reference QTL Literature

SNP20 1H 43.28 0.099 0.0076 2.12 0.3 -0.915 QTL1_SC

SNP22 1H 47.47 0.340 0.0045 2.35 0.34

SNP36 1H 51.23 0.396 0.0299 1.52 0.2 -0.78 QTL2_SC

SNP47 1H 55.49 0.495 0.0190 1.72 0.22

SNP53 1H 60.19 0.309 0.0105 1.98 0.28

SNP56 1H 61.53 0.264 0.0059 2.23 0.32 1.34 QTL3_SC

SNP66 1H 69.53 0.474 0.0148 1.83 0.25

SNP92 1H 101.45 0.288 0.0009 3.04 0.43 -0.70 QTl4_SC

SNP108 1H 126.01 0.108 0.0236 1.63 0.32 -0.76 QTL5_SC

SNP136 2H 33.74 0.349 0.0093 2.03 0.28 -0.63 QTL6_SC Qsch2a [76]

SNP174 2H 63.53 0.406 0.0142 1.85 0.25

SNP176 2H 63.53 0.184 0.0315 1.50 0.19

SNP180 2H 64.24 0.225 0.0066 2.18 0.31 -1.14 QTL7_SC

SNP181 2H 64.24 0.209 0.0137 1.86 0.26

SNP192 2H 71.12 0.474 0.0259 1.59 0.21 -0.68 QTl8_SC QStr.StMo-2H Grain genes

SNP222 2H 90.10 0.485 0.0277 1.56 0.22 -1.05 QTL9_SC Qsch2b [76]

SNP311 3H 51.73 0.214 0.0227 1.64 0.22 -1.15 QTL10_SC

SNP334 3H 55.57 0.373 0.0067 2.17 0.31

SNP358 3H 72.26 0.358 0.0087 2.06 0.29 0.96 QTL11_SC

SNP507 4H 65.05 0.491 0.0160 1.80 0.23 -0.55 QTL12_SC

SNP539 4H 111.68 0.175 0.0048 2.32 0.33 1.18 QTL13_SC

SNP543 4H 123.29 0.256 0.0039 2.41 0.35 1.10 QTL14_SC

SNP599 5H 58.70 0.351 0.0272 1.57 0.21 0.67 QTL_15SC QStr.StMo-5H Grain genes

SNP612 5H 65.49 0.445 0.0135 1.87 0.26

SNP643 5H 110.26 0.104 0.0080 2.10 0.27 -1.79 QTL16_SC

SNP725 6H 22.35 0.469 0.0117 1.93 0.27 0.73 QTL17_SC

SNP727 6H 24.36 0.433 0.0244 1.61 0.22

SNP795 6H 71.08 0.392 0.0282 1.55 0.2 -0.57 QTL18_SC QStr.StMo-6H Grain genes

SNP823 6H 112.32 0.299 0.0252 1.60 0.21 -0.81 QTL19_SC

SNP836 7H 0 0.199 0.0175 1.76 0.24 -0.74 QTL20_SC

SNP844 7H 12.42 0.096 0.0003 3.50 0.65 -1.72 QTL21_SC waxy Grain genes

SNP893 7H 78.22 0.127 0.0040 2.40 0.53 0.81 QTL22_SC

SNP918 7H 87.97 0.297 0.0296 1.53 0.17 0.38 QTL23_SC Qsch7a [76]

SNP930 7H 121.09 0.074 0.0083 2.08 0.24 -1.74 QTL24_SC

SNP951 7H 149.03 0.24 0.0168 1.77 0.27 -0.76 QTL25_SC

Significant markers associated for SC with K-model, their MAF, P-value of association, variance explained by marker (R2), effect of the most significant marker
within the QTL interval, name of the QTL, and the reference QTL or gene from literature.
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identified marker-trait associations for row type are con-
current with all previously identified major loci-vrs1[88],
vrs2, vrs3, vrs4 and int-c [29,30]. Additional, less signifi-
cant associations detected for row type could not be
associated to any known major loci, and need to be
further explored. These results for row type act as a
proof of concept for GWAS in our spring barley panel
and reflect the efficiency of GWAS for high resolution
QTL mapping in inbreeding species. Some of the row
type QTL overlapped with associated regions for other
traits, especially with the traits TGW, SC and CPC
(Additional file 12: Figure S7). As expected, two-rowed

barley has higher TGW than the six-rowed types, as the
number of sink organs (kernels) in two-rowed spikes is
smaller than in six-rowed spikes. While the effect of
spike architecture on TGW is clearly pleiotropic, its
influence on SC and CPC is the result of breeding his-
tory and end use quality. In case of malting barley, vari-
eties are generally bred for high starch and low protein
content. In Europe mostly two-rowed barley is preferred
for malting while six-rowed barley is primarily used as
feed and is characterized by high protein content [22].
As a result, the two-rowed types in our panel have
higher starch content and lower protein content than

Table 11 GWAS results for trait crude protein content

SNP Chr Position MAF P-Value -log10 (P) R2 (%) Effect QTL Reference QTL Literature

SNP47 1H 55.49 0.50 0.0044 2.36 0.78 0.74 QTl1_CPC

SNP97 1H 114.84 0.25 0.0139 1.86 0.56 -0.85 QTL2_CPC

SNP136 2H 33.74 0.35 0.0310 1.51 0.45 0.39 QTL3_CPC QPc.nab-2H.1;Qcp2a [67,76]

SNP170 2H 63.53 0.32 0.0190 1.72 0.54

SNP173 2H 63.53 0.33 0.0115 1.94 0.62 0.72 QTL4_CPC QGpc.StMo-2H.2 [67,75]

SNP174 2H 63.53 0.41 0.0055 2.26 0.74

SNP177 2H 63.53 0.32 0.0116 1.94 0.61

SNP200 2H 74.37 0.25 0.0071 2.15 0.72 -0.56 QTL5_CPC

SNP205 2H 78.03 0.40 0.0296 1.53 0.47

SNP226 2H 96.82 0.23 0.0056 2.25 0.66 -0.90 QTL6_CPC QPc.nab-2H.1 [67]

SNP227 2H 96.82 0.19 0.0160 1.80 0.55

SNP244 2H 116.49 0.24 0.0242 1.62 0.48 -0.47 QTL7_CPC QGpc.HaMo-2H.2 [75]

SNP272 2H 147.94 0.26 0.0103 1.99 0.62 -0.52 QTL8_CPC

SNP305 3H 47.09 0.16 0.0020 2.70 0.86 -1.466 QTL9_CPC

SNP322 3H 55.57 0.18 0.0093 2.03 0.64

SNP357 3H 72.26 0.32 0.0159 1.80 0.51 -0.47 QTL10_CPC

SNP401 3H 122.14 0.24 0.0062 2.21 0.68 0.60 QTL11_CPC Qcp3a [76]

SNP409 3H 130.82 0.41 0.0146 1.84 0.54

SNP518 4H 79.58 0.45 0.0006 3.22 1.09 -0.75 QTL12_CPC QGpc.HaTR-4H.2 [77]

SNP531 4H 97.06 0.11 0.0281 1.55 0.45 0.79

SNP534 4H 101.62 0.16 0.0025 2.60 0.87 QTL13_CPC QGpc.StMo-4H [69]

SNP537 4H 108.70 0.21 0.0016 2.80 0.92

SNP616 5H 74.78 0.51 0.0107 1.97 0.54 -0.814 QTL14_CP QGpc.HaMo-5H [67,75]

SNP623 5H 85.93 0.16 0.0082 2.09 0.61

SNP643 5H 110.26 0.10 0.0055 2.26 0.73 1.52 QTL15_CPC QGpc.DiMo-5H.2 [78]

SNP699 5H 171.66 0.11 0.0219 1.66 0.53 QTL16_CPC

SNP807 6H 83.89 0.25 0.0020 2.70 0.91 0.67 QTL17_CPC

SNP844 7H 12.42 0.10 0.0214 1.67 0.51 0.79 QTL18_CPC

SNP855 7H 38.32 0.35 0.0019 2.72 0.91 -0.86 QTL19_CPC

SNP860 7H 46.19 0.26 0.0314 1.50 0.45

SNP871 7H 61.32 0.24 0.0285 1.55 0.46 -0.50 QTL20_CPC QPc.nab-7H [67]

SNP904 7H 80.94 0.22 0.0036 2.44 0.85 -0.68 QTL21_CPC QGpc.HaTR-7H [77]

SNP925 7H 112.46 0.37 0.0210 1.68 0.49 0.41 QTL22_CPC

SNP930 7H 121.09 0.07 0.00001 4.73 1.57 1.54 QTL23_CPC

Significant markers associated for CPC with K-model, their MAF, P-value of association, variance explained by marker (R2), effect of the most significant marker
within the QTL interval, name of the QTL, and the reference QTL or gene from literature.
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six-rowed types (Additional file 5: Table S3). As
expected, the landraces included in the panel did not
show this stratification as they did not underly this
selection pressure.
Heading date (HD) reflects the adaptation of a plant to

its environment and is a complex trait effected by numer-
ous QTL both in outbreeding [89] and in inbreeding spe-
cies [61]. Many SNP markers were found to be associated
with the trait HD (Figure 9a) and we report a total of 34
significant SNPs defining 19 QTL. Some of these QTL
hit genomic regions that were previously reported to har-
bor major genes including HvFT3, PpdH1, HvFT4, eps2,
HvGI, HvCO3, HvFT1 and HvCO1 (Table 7). In a pre-
vious study using the same panel, fragments from three
flowering time candidate genes were re-sequenced and
SNPs within the gene PpdH1 revealed the largest effects
on HD [14]. In the present GWAS, SNPs located in the
vicinity (ca. 2 cM) of PpdH1 showed significant associa-
tions with HD (Table 7). By further including all PpdH1
SNPs from Stracke et al. [14] into our GWAS, these
SNPs revealed the highest association of all markers used
(Figure 10). These findings lend strength to the hypoth-
esis that a further increase in marker coverage will either
lead to the detection of additional associations or
improve the significance of existing QTLs.
For the trait PHT we found 19 putative QTL regions

located on chromosomes 2H, 3H, 4H, 5H, 6H and 7H
comprising 32 marker trait associations. Semi-dwarf and
dwarf cultivars have been developed worldwide to reduce
lodging and to improve the harvest index. Different
genes/alleles have been deployed in different geographic
regions: the GA sensitive sdw1 dwarfing gene has been
deployed in America and Australia, while its allelic form,
termed denso, is frequently seen in European two-rowed
germplasm. The recessive uzu allele is found in Japanese,
Chinese and Korean cultivars [70,90]. Many QTL for
PHT coincide with previously mapped QTL and genes
(Table 8). The QTL4_PHT on chromosome 2H coincides
with the mapping position of sdw3 which plays a major
role in gibberellins-insensitive dwarfing barley [68]. Two
allelic forms of the dwarfing gene denso/sdw1 map to the
same genomic region as QTL8_PHT located on the long
arm of chromosome 3H [70]. The QTL7_PHT is about
10 cM distant from the uzu locus based on the consensus
map presented in grain genes database.
Thousand grain weight (TGW) is one of the major yield

components having direct effect on the final yield. Alto-
gether 21 QTL were found for this trait and some of them
are in vicinity of row type genes. Some of the QTL were
further confirmed by previously mapped QTL in same
genomic regions (Table 9). QTL14_TGW on 5HL is
observed to effect other traits like PHT, SC and CPC.
As outlined above, starch and protein content of the

grain are major determinants of the end use quality.

Several of the 25 QTL detected for starch content coin-
cided with the previously identified QTL (Table 10). These
include QTL for related traits like acid detergent fiber
(ADF) content, starch granule size and granule shape [76].
QTL21_SC on 7H is located in the region of the waxy
locus known to encode granule-bound starch synthase I
(GBSS I), which catalyses the synthesis of amylose [91,92].
For the total grain crude protein content we identified 23
QTL, located on all the seven chromosomes. Eleven of
these QTL regions co-localize with previously mapped
QTL, while 12 QTL are novel (Table 11). Interestingly, the
majority of QTL for traits SC and CPC are located on
chromosome 7H. Some of the QTL identified for SC coin-
cide with QTL for CPC e.g. chromosomes 1H (55 cM),
2H (33.74 cM), 3H (55 cM), 5H (110 cM) and 7H (12 cM
and 121 cM) (Table 10 & 11). The coincidence of the
QTL for these two traits can be expected due to their
negative correlation (Table 2). On the other hand, we can-
not rule out that some of the shared QTL are the result of
linkage of underlying genes.

GWA reveals small effects only
Even the best associations observed in the present study
showed only modest R2 values (percentage of genetic trait
variation explained) for the corresponding SNPs, implying
low variance predicted by each SNP. This is exemplified
by the QTL ‘Qsch7a’, which in a biparental QTL mapping
study explained 47% of variation in SC [76]. In the present
study, ‘QTL23_SC’ located in the same genomic region as
‘Qsch7a’ explains only 0.2% of the variation. Many GWAS
in humans have reported low R2 values and the rest of the
unexplained variation is termed as ‘unexplained missing
heritability’ [93]. Roy et al. [94], among others, reported
R2- values to range from 0.2% to 3.95% in GWAS for
plants, which corresponds well with our present results. In
a consorted study for the trait “body height”, an impressive
number of 40 genotypic variants have been identified
under a stringent threshold. Together these were only able
to explain around 5% of the variation in human body
height [95,96]. Possible explanations for this “missing her-
itability” include i) insufficient marker coverage, in cases
where the causal polymorphism is not in perfect LD with
the genotyped SNP reduces the power to detect associa-
tions and the variation explained by such a SNP marker.
This has been demonstrated in the present study for the
effect of the PpdH1 gene on HD; ii) rare alleles (MAF <
5%) with a major effect have been dropped from the analy-
sis and will go undetected in cases where they are asso-
ciated; iii) the expression of a character or trait depends
on a large number of genes/QTL with small individual
effects which escape statistical detection; iv) inadequacy of
the statistical approaches available to detect epistatic inter-
actions in GWAS and v) biased estimates of R2 for indivi-
dual SNPs due to the level of population stratification in
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the panel [93,95,97-99]. Although the above mentioned
reasons were mainly discussed in the context of GWAS in
humans, they also pertain to GWAS in plants and other
organisms. In addition to the above mentioned reasons,
the statistical model employed for the analysis will affect
the variation explained by the SNPs. As the stringency and
threshold of the models increases, the power of detecting
small effect SNPs will be reduced. We observed that in the
case of using stringent models for GWAS the larger por-
tion of the trait variation is explained by the model itself
and the less variation is left to be explained by genetic
effects. For the trait HD the K-model, explained nearly
70% of the variation of the trait. Reducing the stringency
of the model would increase the variation explained by the
marker, but at the same time would result in more false
positives. Especially in inbreeding crops like barley, it is
difficult to preclude completely the effect of relationship
among genotypes by applying simpler models. Hence,
GWAS in highly structured populations of inbreeding
crops such as barley will depend on the careful optimiza-
tion of the model regarding sensitivity vs. selectivity.

Conclusions
Overall, our results provide new details on the chances
and pitfalls of GWAS in structured populations of
inbreeding crops like barley. Results from the present
study provide an insight into the genetic architecture of
important agronomic traits for barley (HD, PHT, TGW,
SC and CPC). In total, we identified 107 QTL for these
traits. Some genomic regions harbor QTL for more than
one trait and, based on map comparisons, 50 QTL have
been found to concur with previously mapped QTL. For
all traits together, 57 novel QTL have been detected. To

mitigate the shortcomings of GWAS in inbreeding
crops, future association studies might implement novel
strategies such as joint linkage and LD mapping which
were already successfully applied in various species
[89,100-102]. Furthermore, to fine map and “mendelize”
selected QTLs, staggered patterns of LD decay observed
for different genepools of barley (cultivars, landraces,
wild barley) may be exploited in combination with
biparental mapping and marker saturation strategies
exploiting the ever increasing body of genomic sequence
[30,103]. The feasibility of such an approach was
recently demonstrated by identifying a candidate gene
for the ANTHOCYANINLESS 2 locus using a combina-
tion of association mapping followed by a segregation
analysis in a biparental population and a BAC contig
analysis [104].

Additional material

Additional file 1: Table S1 Information of 957 mapped SNP markers
from the IPK customized OPA that were successful in our panel.

Additional file 2: Table S2 Details of the 212 accessions used for GWAS.
Name of the accession, row type, number of successful markers,
Structure group, region of origin and country of origin.

Additional file 3: Figure S1 STRUCTURE results using DArT markers. Log
probability data (LnP(D)) as function of k (number of clusters) from the
STRUCTURE run using 1088 DArT markers with the same association
panel. The plateau of the graph at K = 6 indicates the minimum number
of subgroups possible in the panel.

Additional file 4: Figure S2 Phenotypic distribution of 224 spring barley
accessions for the traits heading date (HD), plant height (PHT), thousand
grain weight (TGW), starch content (SC) and protein content (CPC).

Additional file 5: Table S3 Phenotypic variation among two-rowed and
six-rowed groups. Estimation of means, standard deviation (SD), variation
(VAR), standard error variation (SEVAR) and coefficient of variance (CV%)
for each trait among two-rowed and six-rowed groups.

Additional file 6: Table S4 Estimation of means, SD, variation (VAR),
standard error variation (SEVAR) and coefficient of variance (CV%) among
all six subgroups in the panel.

Additional file 7: Figure S3 Comparison of BLUPs and BLUEs for starch
content. The graph implies that there is not much difference between
the BLUPs and BLUEs in our experiment.

Additional file 8: Table S5 Marker polymorphism information of the
918 SNP markers used in GWAS in the panel.

Additional file 9: Figure S4 Principal Co-ordinate analysis (PCoA) of the
panel based on the first two components derived using 918 SNPs. The
primary axis tend to separate into subgroups based on their spike
morphology character (blue: six-rowed barley; red: two-rowed barley).
Further clustering is based on origin of the accessions.

Additional file 10: Figure S5 LD plots for each chromosome in barley.
The color of squares illustrate the strength of pairwise r2 values on a
black and white scale, where black indicates perfect LD (r2 = 1.00) while
white indicates perfect equilibrium (r2 = 0). Failed and monomorphic
SNPs as well as SNPs with MAF < 0.05 are not considered.

Additional file 11: Figure S6 GWAS whole genome scans for row type
using different association models (naive, P, Q, QK, PK and K).

Additional file 12: Figure S7 GWAS for all traits. Localization of QTL
and candidate genes for the traits row type (RT), heading date (HD),
plant height (PHT), thousand grain weight (TGW), starch content (SC) and
crude protein content (CPC) on the genetic map with 918 SNP markers.

Figure 10 Association analysis for the trait HD for
chromosome 2H with SNPs from IPK-OPA and the resequenced
PpdH1 fragment [14]. Blue circles represent the IPK-OPA SNPs on
chromosome 2H, Green circles represent the IPK-OPA SNPs that are
significantly associated with HD and are in vicinity of the PpdH1
gene, green triangles represent SNPs from the re-sequenced PpdH1
fragment
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