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ABSTRACT 

Poland, J. A., and Nelson, R. J. 2011. In the eye of the beholder: The 
effect of rater variability and different rating scales on QTL mapping. 
Phytopathology 101:290-298. 

The agronomic importance of developing durably resistant cultivars 
has led to substantial research in the field of quantitative disease resis-
tance (QDR) and, in particular, mapping quantitative trait loci (QTL) for 
disease resistance. The assessment of QDR is typically conducted by 
visual estimation of disease severity, which raises concern over the ac-
curacy and precision of visual estimates. Although previous studies have 
examined the factors affecting the accuracy and precision of visual 
disease assessment in relation to the true value of disease severity, the 
impact of this variability on the identification of disease resistance QTL 
has not been assessed. In this study, the effects of rater variability and 
rating scales on mapping QTL for northern leaf blight resistance in maize 
were evaluated in a recombinant inbred line population grown under field 

conditions. The population of 191 lines was evaluated by 22 different 
raters using a direct percentage estimate, a 0-to-9 ordinal rating scale, or 
both. It was found that more experienced raters had higher precision and 
that using a direct percentage estimation of diseased leaf area produced 
higher precision than using an ordinal scale. QTL mapping was then 
conducted using the disease estimates from each rater using stepwise 
general linear model selection (GLM) and inclusive composite interval 
mapping (ICIM). For GLM, the same QTL were largely found across 
raters, though some QTL were only identified by a subset of raters. The 
magnitudes of estimated allele effects at identified QTL varied drastically, 
sometimes by as much as threefold. ICIM produced highly consistent 
results across raters and for the different rating scales in identifying the 
location of QTL. We conclude that, despite variability between raters, the 
identification of QTL was largely consistent among raters, particularly 
when using ICIM. However, care should be taken in estimating QTL 
allele effects, because this was highly variable and rater dependent. 

 
Beauty is in the eye of the beholder, as the old saying goes. 

One would hope, however, that for visual evaluation of quanti-
tative disease resistance (QDR), the results and inferences would 
not be specific to the rater who assessed the disease severity or 
the scale that was used for rating. Due to the importance of QDR, 
hundreds of studies have been published on the mapping of 
quantitative trait loci (QTL) for disease resistance in plants 
(27,30,32,33). The plant populations used in these studies have 
been assessed almost exclusively using visual estimation of 
disease severity. Typically, populations were assessed by one or a 
few raters using several replications repeated over years, seasons, 
or environments (1,2). The results of those studies are only as 
accurate as the methods used to assess resistance and little is 
known about how rater variability and different rating scales 
influence detection of QTL. 

QDR is an important objective in crop breeding programs 
because this type of resistance tends to be more durable than 
resistance conditioned by genes of large effect (27,29). For some 
pathosystems, QDR is the only available type of resistance. The 
development of cultivars with high levels of QDR remains 
challenging due to the polygenic nature of the phenotype and the 
small phenotypic effects of individual genes. Therefore, progress 

in resistance breeding requires accurate methods for assessing 
QDR. In the field of quantitative genetics, accurate disease 
assessments are important in providing precise measures of QTL 
positions and effects. Accurate identification of disease resistance 
QTL is essential for implementation of marker-assisted selection. 

Accuracy and precision, two different measures of visual assess-
ment of disease severity, have been analyzed in many studies 
(5,13,20,23,24). Accuracy is generally defined as the closeness of 
the visual estimate to the true level of disease. Precision is a 
measure of the repeatability of visual evaluations (22). Multiple 
different terms have been used to describe accuracy and precision 
in disease severity assessment and are described in detail by Bock 
et al. (7). Here, we used the term “precision” to describe the 
repeatability of disease assessments between and among raters, or 
among the ratings of a given individual. Our concern was the 
influence of different raters’ perceptions on QTL mapping out-
comes; therefore, we did not utilize an objective rating technique 
such as image analysis to determine “true” disease levels and do 
not make inferences about accuracy. We use the term “consis-
tency” as a qualitative descriptor for the agreement in position 
and effect size of QTL identified through QTL mapping. 

Many issues concerning visual ratings have been addressed in 
previous studies. By comparing visual evaluation of diseased 
leaves with image analysis of the same leaves, Parker et al. (25) 
found that levels of Septoria tritici leaf blotch and powdery 
mildew were not accurately or consistently estimated, even by 
experienced individuals. Overestimation was evident at low 
disease levels. The correlation between estimates of yield loss and 
disease severity for corky root in lettuce was found to vary with 
different qualitative and quantitative scales (24). The qualitative 
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scales were found to be most precise, whereas the quantitative 
scale correlated best with yield loss. For Phomopsis leaf blight of 
strawberry, the correlation among individual estimations and the 
actual disease severity was high for six different individuals using 
either the Horsfall-Barratt scale (14) (0.85 to 1.00) or direct 
percentage estimation (0.92 to 0.99), though the direct percentage 
estimation was more accurate (20). 

Horsfall and Barratt (14) originally proposed a modified ordinal 
disease rating scale that was based on logarithmic increases in 
disease severity. Each unit increase in the ordinal scale repre-
sented a doubling in the disease severity. This scale was proposed 
because it was believed that the reference stimulus (i.e., amount 
of disease) needed to double for an individual to be able to detect 
a visual difference. It is now acknowledged, however, that linear 
increases in visual stimulus can be detected (21) and that direct 
estimation of disease severity is generally more accurate (13). 
Experience and training have been shown to improve the accuracy 
of disease assessment (6). Nutter et al. (22) showed that computer 
training programs that simulate diseased leaves can increase the 
accuracy and the precision of disease assessment ratings and that 
the use of a standard area diagram can also improve the accuracy 
of visual disease ratings. 

Image analysis and remote sensing have been proposed and 
utilized as tools for accurately determining disease levels (7). 
Image analysis has been used to identify QTL for Gibberella stalk 
rot resistance, though the results were not compared with visual 
evaluation of the trait (26). Outside the field of plant pathology, 
image analysis has been used to analyze and map QTL for other 
traits such as kernel morphology (9) and flour-milling yield (3). 
With continual advancements in remote sensing, it is possible that 
this technology will replace visual assessment of disease severity 
in breeding programs and germplasm evaluation, providing both 
high-throughput phenotyping capacity as well as more accurate 
and precise disease measurements (7). However, past and current 
evaluation of disease resistance is conducted almost exclusively 
by visual assessment, warranting further investigation into the 
effects of rater variability. 

Although many studies have analyzed the ability of individuals 
to give accurate and precise visual assessments of disease and 
have assessed differences among visual rating scales, there has 
been limited work to assess the impact of variability (i.e., pre-
cision) in visual disease estimation on the results and inferences 
made from such studies. There have been many reports of 
mapping disease resistance QTL in plants with the objectives of 
identifying chromosomal regions associated with resistance, 
identifying genes underlying this complex trait, or tagging QTL 
with molecular markers for selection in a breeding program. 
These studies have largely been conducted with a single rater 
using a single rating method (i.e., ordinal or direct percentage). 
The effects of rater variability and the use of different rating 
scales on the conclusions drawn from these studies have not, 
however, been determined. Therefore, the objectives of this pres-
ent study were to (i) compare the precision of different raters in 
assessment of plots in a field nursery and examine how the 
variability among raters affects the results and interpretations of 
QTL mapping studies for disease resistance and (ii) compare the 
use of different rating scales on precision of disease assessment 
and QTL mapping. 

To address these objectives, we utilized the maize–
Setosphaeria turcica pathosystem. S. turcica (anamorph 
Exserohilum turcicum) is the causal agent of northern leaf blight 
(NLB), an economically important disease of maize (Zea mays L. 
spp. mays) throughout the world. The pathogen spreads locally 
through the plant vasculature, causing large necrotic lesions on 
the leaves. Through the Maize Diversity Project (www.panzea.org, 
www.maizegenetics.net), excellent genetic resources have been 
developed for the maize community, providing tools for study of 
quantitative traits in maize. The combination of well-designed 

maize populations, the economic importance of NLB, and the 
quantitative genetic expertise found in the maize community 
makes this pathosystem an excellent model system for studying 
QDR in plants. 

MATERIALS AND METHODS 

Plant materials. The maize nested association mapping 
population (NAM) is a set of 25 recombinant inbred line (RIL) 
families that were derived by crossing each of 25 diverse inbred 
lines with a common reference inbred line (8,19,34). From the 25 
RIL families, the MS71 × B73 population was previously identi-
fied as having large variation in quantitative resistance to NLB 
and minimal variation for relative maturity (J. A. Poland, unpub-
lished data). Minimal variation in relative maturity is beneficial 
because quantitative disease resistance in plants has been previ-
ously associated with maturity (10,12,31). Seed for the MS71 × 
B73 RIL population was generously supplied by E. Bucker 
(United States Department of Agriculture–Agricultural Research 
Service, Ithaca, NY). The population consists of 200 S5 RILs, of 
which 191 were used for this study. The two inbred parents, 
MS71 and B73, were used as checks throughout the experiments. 
The population has been genotyped with 1,106 single-nucleotide 
polymorphism markers, of which 701 were polymorphic and used 
for mapping. Marker positions based on the NAM composite map 
were used (19). 

Raters. Twenty-two individual raters volunteered to participate 
in the experiment in 2008, 2009, or both years. Raters included 
undergraduates, graduate students, and faculty in Plant Science, 
Plant Breeding and Genetics, and Plant Pathology and Plant–
Microbe Biology at Cornell University, Ithaca, NY. Though not 
all had experience in plant disease rating, all had some experience 
in research related to plant biology. To gauge the amount of 
disease rating experience prior to the study, each rater was asked 
to assess their previous experience in two areas: (i) experience 
scoring plant disease in general and (ii) experience scoring NLB 
in maize. Experience levels were rated on a 1-to-5 scale, where  
1 = no experience, 2 = little experience, 3 = some experience, 4 = 
experienced, and 5 = very experienced. 

Field trials for northern leaf blight. Field trials were 
conducted during 2008 and 2009 at the Robert B. Musgrave 
Research Farm in Aurora, NY. Trials were planted on 14 May 
2008 and 18 May 2009. Lines were planted as single-row plots 
2.2 m in length, with 0.76 m between rows. Plots were over-
planted and thinned to an average of 10 plants/row. Pre-emer-
gence and post-emergence herbicide applications were applied 
each year. Trials were laid out in an augmented incomplete block 
design with one replication in 2007 and two replications in 2008. 
Each block consisted of 20 RILs and two checks (B73 and 
MS71). Artificial inoculation was conducted as described by 
Chung et al. (11). In brief, all plants were uniformly inoculated 
with S. turcica isolate NY001 at the six- to eight-leaf stage, which 
corresponded to 27 June 2008 and 16 July 2009. Spring 2009 was 
extremely cool and plant growth was very delayed compared with 
2008. Each year, two types of inocula were simultaneously 
applied to every plant: (i) 2.5 to 3.0 ml of dried infected sorghum 
grains, previously inoculated and cultured for 2 weeks, and (ii) 
1.0 ml of a spore suspension (1 × 103 conidia/ml) in H2O with 
0.02% Tween 20 cultured on lactose casein agar (LCA) plates for 
2 to 3 weeks at room temperature under 12-h-light and 12-h-
darkness conditions. Spores were harvested by flooding the plates 
with sterile H2O, scraping with a glass rod, and filtering through 
cheese cloth. Spore concentrations were determined and the 
inoculum was diluted to 1 × 103 conidia/ml. 

Phenotypic evaluation. Trials were visually evaluated for 
disease severity at two time points each year (ratings 1 and 2). In 
both years, disease severity was assessed as diseased leaf area 
defined as the percentage of total leaf area in the plot that was 
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covered by necrotic lesions from NLB (percentage scale). There 
was little senescence at the time of rating. Raters were advised, 
however, to exclude any tissue that was senescent rather than 
diseased. Chlorosis was not observed in this germplasm under 
NLB infection and there was no significant presence of secondary 
diseases. To evaluate the effect of rating scale on QTL identifi-
cation, a second rating scale, a 0-to-9 logarithmic-based scale (0-
to-9 scale), was also used in 2009. For the percentage rating, 
disease severity was estimated as the percentage of total leaf area 
necrotic with disease using a 0 to 100 percentage scale with 1% 
increments. For the 0-to-9 scale, a disease severity scale based on 
logarithmic increases in diseased leaf area was used (13) and 
additional semiqualitative descriptors were incorporated (Table 
1). In 2008, four raters participated in the first rating and six 
raters participated in both ratings. In 2009, 12 raters evaluated the 
population at both ratings and four raters evaluated only the 
second. In 2009, four raters used both scales, while the remaining 
raters were randomly assigned one of the two scales. The raters, 
rating time-points evaluated, and scale used are listed in the 
supplemental data. 

Data analysis. The primary objective of this study was to 
examine the precision of different raters in disease severity 
assessment and how this affected QTL mapping. We considered 
the correlation between replications and the correlation among 
different raters and the mean rating as measures of precision. 
Correlations between raters and between replications for indi-
vidual raters were evaluated in R statistical software (28). Statis-
tical tests based on correlation values were evaluated by con-
ducting a t-test or fitting a general linear model (GLM) where 
noted. Because an independent measure of disease severity (e.g., 
image analysis) was not taken, the accuracy (correlation to true 
value) of visual assessments was not considered here. 

Best linear unbiased predictions (BLUPs) for each line were 
determined using PROC MIXED in SAS statistical software 
(v9.1; SAS Institute Inc., Cary, NC). A single model was fit for 
each of the rating scales, incorporating all of the assessments 
from all raters, year, block, and rating time-point effects. The 
model solution gave BLUPs for each line. For reduced models 
where certain raters, years, ratings, or replications were to be 
analyzed, the random effect terms were left out accordingly. 

Two methods for QTL mapping were employed. Stepwise 
GLM selection was conducted in SAS v9.1.3 using PROC 
GLMSelect (SAS Institute Inc.). The BLUPs from each respective 
rater, year, and rating combination (and the BLUPs from the full 
model) were assigned as the response variables, and model 
selection was conducted for marker effects. Marker effects were 
fit as a continuous variable consistent with an additive effects 
model. A selection threshold of P value = 0.001 was used for 
entry and removal of selected effect in the model. Model solutions 
were saved for the estimated effects of each selected marker in the 
model. 

Inclusive composite interval mapping (ICIM) (18) was con-
ducted using QGene v.4.2.3 (15). Cofactor selection was con-
ducted with stepwise selection with a selection threshold of F = 

3.0. The default value of 2 centimorgans was used for a scan 
interval. As with GLM, the BLUPs from each of the raters were 
mapped as a separate trait. Due to computational constraints, 
permutation analysis to determine an experimental significance 
threshold for each individual and rating was not conducted. A 
threshold of likelihood ratio = 3 (log of odds) was used as a 
general threshold for significant QTL. 

RESULTS 

Precision of disease ratings. We examined all possible pair-
wise correlations between raters for each of the years. All pair-
wise correlations examined between raters were significant at P < 
0.0001. In year 1, the correlations between raters (all using a 
percentage scale) were 0.72 to 0.91 for the first rating and 0.75 to 
0.91 for the second rating. In year 2, the correlations between 
raters using a percentage estimate were 0.65 to 0.88 for the first 
rating and 0.70 to 0.93 for the second rating. For ratings using the 
ordinal scale in year 2, between-rater correlations were 0.59 to 
0.73 for the first rating and 0.58 to 0.82 for the second rating. 
Though the percentage scale used continuous values of 1 to 100, 
there was a tendency to score using intervals of 5 (data not 
shown). This was particularly evident at higher disease levels. 

To examine the precision of each of the different raters, the 
correlations between replications for the year 2 trial were ex-
amined for each rater (Table 2). The correlations varied from 
0.409 to 0.959, showing large differences between raters. The 

TABLE 1. Ordinal rating scale used for assessment of northern leaf blight severity describing the disease severity classes and additional descriptors 

Category DLA (%)a Additional descriptors 

0 0 No lesions visible 
1 >0–1 Few small lesions on lower leaves 
2 >1–2 Several lesions on lower leaves 
3 >2–5 Many lesions on lower leaves 
4 >5–8 Coalescent lesions on lower leaves 
5 >8–12 Lower leaves mostly blighted, few small lesions on middle leaves 
6 >12–20 Lower leaves almost completely blighted, some lesions on middle leaves 
7 >20–33 Lower leaves completely blighted, considerable lesions on middle leaves 
8 >33–66 Lower leaves completely blighted, middle and ear leaf largely blighted 
9 >66–100 Most to all of green leaf tissue blighted 

a Diseased leaf area (DLA) percentage range. 

TABLE 2. Pearson correlation coefficients for individual raters in year 2a  

Individual Rating 1 Rating 2 

Percentage scale   
2 0.6828 0.6919 
3 0.7448 0.7269 
4 0.8368 0.8435 
5 0.7916 0.8067 
7 0.8426 0.8719 
8 0.6969 0.8594 
11 0.6787 0.7651 
14 NA 0.7809 
18 0.6817 0.7856 
19 NA 0.7719 
21 0.6936 0.7273 
Average 0.8819 0.8964 

Ordinal scale   
1 0.4377 0.7308 
2 0.5821 0.5642 
3 0.409 0.5554 
5 0.5407 0.7433 
7 0.6507 0.7357 
15 NA 0.6869 
17 0.578 0.6657 
20 NA 0.5732 
Average 0.7353 0.8193 

a Correlation between disease estimates for the two replications was
determined for each rater for the first and second ratings. NA = not 
available. 



Vol. 101, No. 2, 2011 293 

average correlation when using the percentage scale was 0.764 
whereas the mean correlation for individuals using the 0-to-9 
scale was only 0.603 (Fig. 1). To test the effect of rating scale, 
rater, experience, and rating time-point on precision of disease 
estimates, a linear model was fit to the between-replication 
correlations. There was a significant effect of rating scale (P  
value < 0.0001), with the percentage scale being more precise 
than the 0-to-9 scale. More experience with scoring NLB resulted 
in increased precision (P value = 0.0009), whereas there was only 
a trend for general disease scoring experience (P value = 0.0967). 
There was also an increase in precision for the second disease 
rating (P value = 0.001). 

Disease severity ratings are conducted after flowering for this 
pathosystem (no further host development); therefore, the disease 
severity of a line should be higher (or the same) at the later of  
two time-points. For raters who conducted two disease assess-
ments, the number of lines that were assessed lower for the 
second rating was determined. There were large differences, with 
some raters assessing <1% of the lines lower on the second rating 
while other raters assessed >50% of the lines lower at the second 
rating. 

To compare the direct percentage scale and the ordinal scale 
(with underlying percentage ranges), the percentage and 0-to-9 
scores for the four individuals who evaluated with both scales 
were compared. Each class of the 0-to-9 scale was defined by an 
underlying percentage range. This range was used to determine 
whether the percentage assessment assigned to a given plot fell 
within the defined ranges of the 0-to-9 scale. The fraction of 
percent ratings outside the defined class ranges was 36 to 97%. 
For the first rating, three of the four raters had >70% of the 
percentage observations outside of their respective 0-to-9 class 
ratings. This general lack of agreement between the two scales 
indicates that comparison of results from different scales is 
particularly uncertain, even if an ordinal scale has a defined 
underlying percentage basis. Although the correlation between 
percentage and 0-to-9 ratings was high, there was a nonlinear 
relationship between the two scales (Fig. 2). Based on residual 
values from a linear fit of genotype (line), we observed that esti-

mates of NLB disease severity using the direct percentage scale 
were heteroscedastic; that is, the variability of estimates increased 
with increasing disease severity. This same trend was not apparent 
in the 0-to-9 ratings. 

Agreement of QTL identification among raters and between 
rating scales. To identify molecular markers associated with 
NLB resistance, stepwise GLM selection was conducted for each 
of the respective rater, year, rating, and scale combinations. The 
results show general agreement for QTL identification. Several 
QTL were identified across all raters, though there was dis-
crepancy between individuals for the identification of QTL with 
small effect (Fig. 3). To best compare the difference between 
rating scales, the line BLUPs calculated using disease estimates 
from all raters were used for mapping with the percentage and 0-
to-9 ratings scales and also a square root transformation of the 
percentage scale (Fig. 4). Because the percentage and 0-to-9 
rating scales had different means and variances, standardized allele 
effects were used to compare the results from these two scales. 
Eleven QTL were identified for the 0-to-9 scale and the square-
root percentage scale, while nine QTL were identified for the 
percentage scale. Eight of the QTL were identified across all three 
scales and the standardized allele effect estimates were roughly 
equivalent. Two QTL were identified using the 0-to-9 and square-
root percentage scale, indicating that the detection of smaller-
effect QTL might be sensitive to the type of scale and the 
resulting distribution. Three additional QTL were found by 
mapping using only one rating scale; these might be sensitive to 
the trait distribution or false positives. The same trend was seen 
when ratings from different raters were used for mapping; the 
large-effect QTL were identified across all raters, whereas small-
effect QTL were identified only by some. 

The GLM solutions gave estimates of selected QTL marker 
effects as well as standard errors for those estimates. These effect 
estimates are analogous to the allele effect at that locus. The 
estimated effects of different raters for the percentage scale in 
year 2 were compared and showed significant differences for each 
of the loci that were identified by multiple individuals (Fig. 5). To 
determine whether this was an effect of different variances for the 

Fig. 1. Plot of disease severity estimates using either direct percentage rating
or 0-to-9 ordinal scale shows a nonlinear relationship between the two scales. 
Data are plotted for each recombinant inbred line using phenotypic scores
from the average of all individuals using either a 0-to-100 percentage scale or
a 0-to-9 ordinal scale. A second-degree polynomial was fit (R2 = 0.938). The 
log-based classes in the 0-to-9 scale are evidenced in the nonlinear
relationship. 

 

Fig. 2. Box and whisker plot showing higher precision results from using 
percentage scale than ordinal scale. Data are based on within-rater correlation 
between replications in year 2. Correlation values for individual raters are 
shown as circles with the box plot showing the 25th and 75th percentiles. The
difference between the means of the two rating scales is significant (P value < 
0.0001). 
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trait distributions among raters, standardized estimates were com-
pared. These values were less variable among raters though 
significant differences remained (Fig. 6). 

ICIM produced very consistent results across different rating 
scales. The BLUPs of all individuals were used to compare the 
different rating scales for ICIM, which produced almost identical 

results in terms of QTL position and significance of identified 
QTL effects (Fig. 7). This is despite a nonlinear trend between the 
percentage and the 0-to-9 scale (Fig. 2). For ICIM across all 
individuals, the positions of significant QTL were largely consis-
tent, though the height of the peaks varied, indicating differences 
in the power of QTL detection among individuals (Fig. 8). 

 

Fig. 3. Genomic position and relative effect of quantitative trait loci (QTL) identified from stepwise general linear model selection for each rater using the
percentage scale. Direct percentage estimates of disease severity were used to detect resistance QTL for each rater. Genomic positions of QTL identified using 
stepwise model selection are shown along the horizontal lines, with vertical lines separating chromosomes. Each horizontal line corresponds to a single rater (as
noted by a number) or the results using average estimates from all raters (Avg). Relative effect size of identified QTL is represented by the size of the circle. Solid
circles represent resistance from MS71 while open circles represent resistance from B73. The position of molecular markers is shown by black triangles along the 
bottom. 

 

Fig. 4. Genomic position of quantitative trait loci (QTL) identified from stepwise general linear model selection using the percentage and 0-to-9 ordinal rating 
scales. Average disease assessments from all raters using either a direct percentage estimated of disease severity or an ordinal 0-to-9 rating scale were used to 
identify resistance QTL using stepwise linear model selection. A square root transformation of the percentage data is also included. Genomic positions of QTL 
identified are shown along the horizontal lines, with vertical lines separating chromosomes. The relative effect size of identified QTL is represented by the size of
the circle. Solid circles represent resistance from MS71 while open circles represent resistance from B73. The position of molecular markers is shown by black
triangles along the bottom. 
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DISCUSSION 

Quantitative disease resistance remains an important area of 
research in plant breeding and phytopathology (17,27). To under-
stand the underlying genetics of quantitative disease resistance, 
segregating populations have been used to map QTL. In virtually 
all of these studies mapping QTL, visual assessment has been 
used to determine disease severity. Although it remains unknown 
how differences among raters and rating scales affect the QTL 
mapping results, various resource-intensive endeavors are under-
taken based on the conclusions of these studies, including re-
search and product-development projects such as map-based clon-
ing and marker-assisted selection of QTL in breeding programs. 
Therefore, it is pertinent to have a better understanding of how 
variability among raters and the use of different rating scales 
affect QTL mapping results. 

We used the correlation between replications and the corre-
lation among raters as indicators of precision (22). The cor-
relations observed between raters were consistent with or slightly 
lower than has been seen in previous studies (13,20,23). The 
lower level of precision could be attributable to diseased field 
plots being more difficult to assess than images of single leaves or 

difficulty in precisely scoring disease severity in this pathosystem. 
There were large differences among raters as well as between 
rating scales used. We used a simple 1-to-5 scale to measure rater 
experience for general plant disease assessment and also for NLB, 
the specific pathosystem under study. There was a significant 
increase in precision with higher NLB rating experience and a 
slight trend for general experience. Several previous studies have 
also observed the trend of improved precision (and accuracy) for 
raters with more experience (7,13,22). 

It was also observed that over half of the plots were estimated 
to have a lower disease severity at the second rating, which was 
interpreted as an indication of imprecision in disease ratings. 
Although in principle, this could have resulted from host growth 
or leaf senescence, it is more likely to be the result of imprecise 
rating because the experiment was evaluated after flowering (no 
further development of host tissue) and there was minimal leaf 
senesce between rating time-points. A lower score for the second 
rating suggests that either the first rating was overestimated, the 
second rating was underestimated, or both. 

There was a nonlinear trend between the direct percentage scale 
and the 0-to-9 ordinal scale, consistent with the log-based classes 
defined for the ordinal scale. Though there is limited power in this 

 

Fig. 6. Bar graph showing standardized estimated allele effects are more consistent for raters using the percentage scale at the same quantitative trait loci  as in
Figure 5. Estimated allele effects are shown as the increase or decrease in disease conditioned by the MS71 allele for each rater (numbered) and the average of all 
raters (A). Units represent standard deviations on total variance for each individual. Confidence intervals (95%) are shown. 

 

Fig. 5. Bar graph showing large variability in the estimated effect size of quantitative trait loci (QTL). Estimated allele effects at two QTL identified by all raters 
using the percentage scale are shown by the height of the bars. Allele effects are shown as the percentage increase or decrease in disease conditioned by the MS71
allele based on the ratings for each rater (numbered) and the average of all raters (A). Confidence intervals (95%) are shown. 
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study to compare rating scales (due to a limited number of raters 
using each scale), we were able to detect a significant increase in 
precision with the direct percentage estimates. Comparison of dis-
ease assessments using the 0-to-9 scale versus the percentage scale 
showed that scoring with the direct percentage scale was signifi-
cantly more precise than using the 0-to-9 scale after accounting 
for rater experience and rating time-point. Although only measur-
ing precision here, this is in agreement with previous studies that 

found higher accuracy when using a direct percentage scale than an 
ordinal scale (4,13). The proposed reasons for higher accuracy with 
direct percentage estimates are several, and include difficulty in trans-
ferring from a percentage scale (observed) to an ordinal scale, 
estimation error compounded with rounding error imposed by the 
classes, and difficulty in maintaining consistency in classes (13). 

The percentage and 0-to-9 scales were correlated but there was 
little direct agreement between them, even though the 0-to-9 scale 

 

Fig. 8. Quantitative trait loci (QTL) profile for inclusive composite interval mapping using disease estimates from different raters. Raters are numbered to the left
of each QTL profile and the scale used is shown in parentheses. The x-axis is the genomic position in centimorgans (cM) of the identified QTL. Chromosomes are
marked by vertical gray lines and numbered along the x-axis. Positions of markers used in mapping are shown as black triangles below the plot. The QTL profile is 
shown as the likelihood ratio (LOD). The black and gray bar at right gives the scale of LOD = 20 with increments of 2.5. 

 

Fig. 7. Quantitative trait loci (QTL) profile for inclusive composite interval mapping using different rating scales. The best linear unbiased prediction from the 
mixed model using data from all raters for the two respective scales (direct percentage and 0-to-9 ordinal) as well as a square root transformation of the percentage 
values were used for mapping. Shown on the x-axis is the genomic position in centimorgans (cM) of the identified QTL. Chromosomes are marked by vertical
gray lines and numbered along the x-axis. Positions of markers used in mapping are shown as black triangles. The QTL profile is shown as the likelihood ratio 
(LOD). The black and gray bar at right gives the scale of LOD = 20 with increments of 1. 
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was specified with an underlying percentage scale. For three of 
the four raters who evaluated with both scales, fewer than half of 
the direct percentage assessments were within the respective 
range of the assigned class from the 0-to-9 scale. This agrees with 
findings that transferring ratings from an ordinal scale to a per-
centage scale can be unreliable, even if the ordinal scale was 
developed with a defined underlying percentage scale (16). 

For QTL mapping, ICIM was robust to differences among 
individuals and rating scales in identifying the position and 
significance of QTL. Using the line BLUPs from all individuals, 
the ICIM mapping results from percentage and 0-to-9 ratings 
were almost identical. As measured by correlation between repli-
cations, the line BLUPs using estimates from all individuals were 
the most precise assessments. This indicates that, for precise 
phenotypic values, the type of scale used should not have an 
effect on the position and significance of identified QTL. The 
consistency of the ICIM results from the percentage and 0-to-9 
scales was in contrast to the nonlinear relationship of these two 
ratings. The consistency of ICIM was further observed in the 
individual ratings because most individuals, regardless of the 
rating scale used, identified the same QTL. 

Although there was agreement among raters for the positions of 
identified QTL, the estimated additive effects of those QTL was 
highly variable. At some QTL that were identified by all raters, 
there were threefold differences in the estimated effects. This 
variation in allele effect estimates is largely based on the popu-
lation variance from the individual raters. Raters who tended to 
score using a larger range of phenotypic values (higher population 
variance) had estimated QTL effects that were larger. When allele 
effects were standardized, the estimated allele effects were more 
consistent, though significant differences remained among raters. 

It is our observation that, for QTL mapping using visual 
observations of disease severity, precision of the disease estimates 
has the greatest effect on power to detect QTL. Because all raters 
were fairly precise, there was general agreement among raters for 
the detection of QTL. The magnitude of the estimated allele 
effects, however, was highly variable among raters. Most previous 
QTL mapping studies should be considered to have high precision 
because multiple seasons and replications were generally used in 
the disease resistance evaluation, leading to accurate assessments 
of the genotype means. In this regard, the identified QTL can be 
considered reliable. However, the accuracy of these studies is not 
known (and cannot be known) and, hence, the estimated allele 
effects of identified QTL are likely specific to the individual study 
and the rater who conducted the disease assessments. 
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