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Introduction 

Increasing episodes of drought, lack of sufficient nutrients, exposure to toxic minerals, and soil compaction 

are just a few examples of the environmental constraints that the roots are exposed to during plant growth. 

Understanding how roots respond to these stresses is crucial for improving crop production under such 

conditions. Yet, investigating roots is a very difficult task and, therefore, very little is known about the 

precise role that the roots play in contributing to plant adaptation to hostile environments. It is assumed that 

while the root depth and abundance would contribute to drought tolerance, profuse rooting would enhance 

nutrient capture, and where the membrane transporters would exclude salts from the root cells. However, a 

great deal is still unknown about how these mechanisms actually operate; for example which particular 

characteristics of roots and root hydraulics actually contributes to water uptake in a way that confers 

increased tolerance, how the stress signaling from the roots affects the physiological relations in the shoot 

and those between the shoot and the root, how water and nutrient absorption relate to one another when 

both are limiting, or how roots avoid the loading of salt in xylem vessels.  

 

In this paper, our intention is not an exhaustive review of roots, but to highlight a few research topics 

related to abiotic stresses - mostly drought stress, but also nutrient limitation (especially phosphorus) and 

salt stress - where roots and their hydraulics are at the center stage. First, we provide an update on root 

structure, root hydraulics, and modes of water and nutrient absorption, mainly focusing on how inter- and 

intra-specific variations in these aspects can modify the way roots respond to a range of abiotic stresses. 

We then review scattered reports across a range of crops showing the contribution of roots to stress 

tolerance, and then report our own assessment of the role of roots using near isogenic lines (NILs) 
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containing a terminal drought tolerance QTLs. We next review the breeding efforts on roots, some aspects 

of genetics, and report recent work at ICRISAT where the DREB1A gene appears to positively affect root 

growth in transgenic groundnut under drought conditions. We follow by looking at the role of roots in 

nutrient acquisition, and how water and nutrient uptake issues need to be addressed holistically. Then, we 

look at roots from the angle of salinity tolerance, reviewing where roots can contribute to salt tolerance. 

The following part is on root functionality and we argue that further progress on roots should concentrate of 

measuring both volume and kinetics of water uptake rather than root morphological traits. Finally, we 

review how water use efficiency (WUE) and other mechanisms involved in water saving in the soil profile, 

can eventually allow roots to sustain water uptake. This is considered from the angle of the chemical and 

hydraulic signaling taking place between roots and shoots. Based on the above, we conclude by proposing 

research avenues to unlock our knowledge on roots, in a way that eventually allows breeding for improved 

root characteristics in the face of current climate uncertainty. 

 

Roots and stress tolerance – A review of past efforts 

The composite transport model - Besides the fact that roots supply water to the plant and contribute to the 

overall plant water balance, relatively little is known about the processes and regulations of water uptake. It 

is well established that the hydrostatic pressure created by transpiration from the shoot is transmitted to the 

xylem vessels of the shoot and the roots, which drives water in the root cylinder toward the xylem vessels 

(Tyree, 1997; Steudle, 1995). It is also clear that the hydrostatic pressure is not the only factor responsible 

for water uptake, which also involves specialized membrane transporters (aquaporins) (Chrispeels and 

Maurel,1994, Tyerman et al., 2002, Javot and Maurel, 2002). Indeed, under no transpiration, water can be 

taken up by roots through an osmotic gradient (Steudle, 2000a). Therefore, the current model of water 

uptake through the root cylinder to the xylem, the composite transport model (Steudle, 2000a), is such that 

water is taken up via three major pathways: (i) an apoplastic pathway where water travels through the 

apoplast of the cells in the root cortex, toward the endodermis and the xylem vessels; (ii) a pathway of 

symplastic water transfer where water goes through cells and remains in the cytoplasm, traveling in the 

membrane continuum (endoplasmic reticulum and plasmodesmata); and (iii) a pathway through the 

vacuoles of cells (Steudle and Petersen, 1998; Steudle, 2000b) (Figure 1). It is considered that (ii) and (iii) 
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represent the cell-to-cell pathway, as these components are difficult to separate and both are using 

membrane transporters (aquaporins). This pathway usually offers a large resistance to water flow in 

contrast to the apoplastic pathway, which predominates when transpiration demand is high (Steudle, 

2000a&b).  

 

Regulation of radial resistance and abiotic stresses - Under various stresses such as drought, salinity, 

nutrient deficiency, root aging, or environmental conditions such as temperature, humidity, or light, the 

resistance to water flow varies (Steudle and Henzler, 1995), and, for instance, usually increases under water 

deficit (Steudle, 2000a). Most of that resistance is located in the root cylinder (radial resistance), whereas 

xylem vessels normally offer much less resistance (axial resistance) (Steudle, 2000a). In the root cylinder, 

the cell-to-cell pathway is a highly regulated movement, involving the crossing of many membranes 

through membrane transporters (aquaporins, Tyerman et al., 2002, Javot and Maurel, 2002), which usually 

offers a large resistance to water flow. Therefore, the understanding of which components of the composite 

model (Steudle, 2001) predominate under non-stressed conditions, and how these components change 

under a range of abiotic stresses, are crucial in understanding how plants regulate the rate of water and 

nutrient supply and eventually support transpiration and growth. Several reports have shown intra- and 

inter-specific differences in the relative proportion of water traveling through each of these pathways 

(Steudle and Frensch, 1996; Yadav et al., 1996; Steudle and Petersen, 1998, Steudle, 1993, Jackson et al., 

2000). Intra-specific differences in the hydraulic properties of roots would affect the rate of soil water use, 

or would lower the root length density needed to absorb a given amount of water. The water traveling 

through the apoplastic pathways also lacks a “filtering” effect from the cells (the reflection coefficients of 

nutrients is usually small or close to zero), thereby taking along a number of nutrients such as salt (Azaizeh 

et al., 1992) or ABA (Hartung et al., 1998; Freundl et al., 2000) (“solvent drag”). In summary, the 

predominance of either one of the pathways could have a dramatic influence on the regulation of water 

uptake, with or without water stress. It also could have dramatic effects on the absorption of toxic salts (see 

below the section on salinity). Since, nutrient stress also affects the resistance provided by roots to the 

water flow; a nutrient deficiency would also affect the plant by influencing its water balance. 
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Roots as a consequence of an evolutionary strategy - Before going any further, we feel that it is important 

to “demystify” the importance of root for stress adaptation, in particular drought. For instance, many desert 

plants have been reported not to have a deep root system, whereas a deep rooting would become a more 

common trend in less extreme dry areas (Kummerow, 1980). In fact, the importance of any aspect of 

rooting pattern (depth, depth distribution, root length density, etc.) is totally relative to the distribution and 

amounts of water or nutrients in the soil profile.  For example, an increased root depth/root volume is 

useful only where there is significant water available to exploit by increasing soil volume explored by 

roots. An increased root length density (RLD) is important only where there are significant amounts of 

water which is tightly bound to the soil matrix and does not readily move in response to local gradients 

created by root extraction – e.g. montmorillonitic clay soils. Also plant strategies for water uptake vary; 

some desert plants such as cacti have extensive but shallow systems to quickly capture large amounts of 

rainfall and nutrients from soil surface layers because they can store this for long periods, whereas others 

such as the creosote bush have roots to as much as 20 m, to tap water very deep in the soil profile where 

there is limited competition for water from other species. So, we believe that rooting aspects in most plants 

are evolutionary strategies to exploit environmental opportunities. We should therefore approach the roots 

of crops in the same way to exploit their diversity and their adaptive potential. What follows is a summary 

of the work on roots in ICRISAT´s mandate crops and few others, mostly focused on the adaptation to 

drought. 

 

Roots in chickpea – In South Asia chickpea is mostly grown during the postrainy season in deep clay soil 

and depends on the residual moisture contained in the soil profile, therefore facing water deficit in the latest 

part of the growth cycle. In this context of terminal drought, breeding for root traits appears to be the right 

approach and Kashiwagi and colleagues (2006) have shown the importance of roots for seed yield under 

terminal drought conditions in chickpea. This work has been a major effort at ICRISAT for the past 20 

years (Saxena, 1984, Johansen et al., 1997, Krishnamurthy et al., 1999) where a better adaptation of plants 

to terminal drought has been shown to be due to deeper rooting and higher root length density (RLD) in the 

deep layers. However, no work has been done to improve the nutrient uptake by chickpea plants. It has 

been reported that chickpea was able to allocate more roots to the deeper soil layers under conditions of 
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stress than other legumes (Benjamin and Nielsen, 2005), or than more sensitive genotypes (Kashiwagi et 

al., 2006). However, this was so only when the phenology of the genotype was well suited to the test 

environment. For example, the chickpea genotypes K1189 and ICC898 had adequate RLD compared to 

ICC4958 and Annigeri in the work by Kashiwagi and colleagues (2006), but their yields were poor under 

terminal drought, mostly because they were longer duration varieties. As such, the putatively beneficial 

effect of roots on terminal drought yield was overridden by the effect of crop phenology. Also, the testing 

of a mapping population developed between two elite parental lines of chickpea varying for their root 

volume showed that the differences in RLD would not always translate in a yield increase (Serraj et al., 

2004), especially in locations where the season length is higher and the evaporative demand lower such as 

in North India (Krishnamurthy et al., 2004), thereby, showing that parameters other than roots also played a 

more crucial role. Therefore, roots are only one component of the overall performance of chickpea under 

terminal drought conditions, and needs to be addressed together with other traits. Similar principles are 

very likely to prevail in other crops. 

 

Roots in groundnut - Despite the paucity of studies on roots, it has been shown that roots are expected to 

play an important role in drought adaptation in the light textured and deep soils of the South West US 

(Ketring et al., 1982, 1984; Pandey et al., 1984), where a relation between root depth and pod yield has 

been established (Robertson et al. 1980, Boote et al., 1982). However, only a few genotypes were tested in 

these experiments, even though differences in the rooting depth were found (Krauss and Deacon, 1994). As 

for the putative role of root for nutrient uptake in nutrient poor soils, virtually no work has been made in 

groundnut in that respect. A few studies in the late 70’s and early 80’s reported root responses to water 

stress and indicated that the growth of roots increased upon water deficit (Allen et al., 1976), in particular 

rooting depth (Lenka and Misra, 1973; Narasimham et al., 1977, Ketring and Reid, 1993). Ketring and Reid 

(1993) found that groundnut was able to establish both a deep and laterally spreading root system fairly 

early during the growing cycle, providing adaptation to drought occurrence during and later in the season. 

By contrast, Robertson et al (1980) did not find any RLD differences at shallow soil depths between well-

irrigated and water stressed conditions. Meisner and Karnok (1992), contrary to previous studies cited 

above, found that root growth decreased upon water deficit, though not as much in the deeper layer where 
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water was still available. In summary, rooting characteristics appear to vary in groundnut but the dynamics 

of root growth under water deficit are still unclear. To date, data are still lacking to conclude which root 

trait, in which soil, environment, and stress type, could contributes to drought tolerance in groundnut. 

 

Roots in pigeonpea - Virtually nothing is published on roots in pigeonpea under water stress, except for a 

few reports from the late 70’s (Narayanan and Sheldrake, 1975, 1976, Arihara et al., 1991). It is assumed 

that pigeonpea is deep-rooted and that confers drought tolerance because the crop is usually grown on deep 

soils and completes its life cycle on residual moisture. More work has been accomplished in pigeonpea in 

relation to its ability to absorb nutrient having low solubility such as P, thanks to the secretion of pissidyc 

acid (Ae et al., 1991). Recent data on the hydraulic characteristics of pigeonpea roots, in particular the 

ability for hydraulic lift, might be an interesting asset for both nutrient and water (Sekiya and Yano, 2002, 

2004 – See related paragraph). As we will see below, the capacity for hydraulic lift may be at the price of a 

well-developed endodermis, which may allow excess salt to flow-in freely and cause salt stress sensitivity. 

In any case, pigeonpea is a legume crop where, probably a lot more work on roots is needed to fully exploit 

the potential and particularities of its roots. Yet, studies on pigeonpea root traits have remain largely 

anecdotal; how roots of pigeonpea contribute to its adaptation to dry environment, how its ability to take up 

low solubility nutrient would interact with water uptake under water deficit, are virtually unknown. Like 

chickpea, the large variations in flowering time across the pigeonpea germplasm would require a 

comprehensive consideration of both phenology and roots.  

 

Roots in sorghum – Sorghum is considered as a drought tolerant crop whose well-known deep roots are 

assumed to play a key role in its drought adaptation. To the best of our knowledge, no work has targeted 

the roots of sorghum to enhance to nutrient absorption in low fertility environments. Although, a lot of 

drought-related studies have been carried out with sorghum, surprisingly very limited work has been done 

on the roots. Only a few reports have presented evidence of genotypic variation for root traits (Bhan et al., 

1973, Mayaki et al., 1976, Jordan et al., 1979), and these studies have focused on only a few breeding lines 

with a limited genetic base. Genotypic variations for root traits have been found in other studies using 

solution culture (Blum et al., 1977), or in small pots (Abd-Ellatif et al., 1978), but the results should be 
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considered with caution. A more recent study showed that a drought tolerant sorghum line possessed roots 

at least 40 cm deeper than a drought sensitive one (Salih et al., 1999). This agrees with some of our own 

observations showing deeper rooting of staygreen lines under drought conditions (Vadez et al., 2005) 

(Figure 2). In fact, most of the drought-related work in sorghum has focused on the staygreen trait which is 

known to be extremely complex (Borrell and Hammer, 2000). Different hypotheses have been advanced to 

explain staygreen; these include the N balance between leaves and grain (Van Oosterom et al., 2006a&b, 

2007), or differences in transpiration efficiency (Borrell et al., 2000). It has been shown that the staygreen 

characteristic of two maize hybrids would correlate with a higher N uptake during grain filling in the 

staygreen type (Rajcan and Toollenaar, 1999). Surprisingly, no one has hypothesized that N uptake 

differences could result from water uptake differences during grain filling. More work is certainly needed 

in this direction, since it has been shown that root growth continues well into the grain filling stage in 

hybrid sorghum (Bower, 1972, cited by Jordan et al, 1979). 

 

Roots in pearl millet – Like sorghum, pearl millet is also a deep rooted and a drought-adapted crop. 

Unfortunately, few studies have explored the genetic variation for root traits and none has attempted to use 

these differences in breeding. Data from Chopart (1983) indicate that the rooting depth of pearl millet in 

deep sandy soils can reach at least 200 cm and that the root front can increase as much as 3.5 cm per day 

between 15 and 50 days after sowing. Bruck et al (2003) found no genotypic differences in the root depth 

of 5 pearl millet varieties, but found genotypic differences in the RLD, especially at depths between 50 and 

175 cm, with RLD as high as 0.30 cm per cm3 at 125 cm depth. In such case, root expansion would be both 

for water and nutrient capture, in the erratic rainfall and poor fertility conditions under which it is cultivated 

in the Sahel. At ICRISAT, we have assessed the rooting depth and RLD in long PVC tubes (2.4 m long, 16 

cm diameter) in hybrids based on parental lines contrasting for terminal drought tolerance and in near 

isogenic lines with and without terminal drought tolerance QTLs. We found that the terminal drought 

tolerant lines do have a relatively more profuse rooting in the deeper layers than the sensitive lines (Vadez 

et al., 2005) (Figure 3). Our current hypothesis is that a slight increase in deep rooting would help sustain 

higher water uptake during the post anthesis period, which in turn would contribute to better grain filling, 

under environments in which water is available in deeper soil layers. 
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Roots in other crops - Roots have also been investigated in other crops, although with a similar limited 

focus and a “non-sustained approach”. These include  white clover (Blaikie and Mason, 1993), lentils 

(Silim et al., 1993a, 1993b), wheat (Gregory and Eastham, 1996), cotton (Taylor and Klepper, 1975; 

Quisenberry et al., 1981), oats (Carrigan and Frey, 1980), rice (Champoux et al., 1995; Yadav et al., 1997; 

Price et al., 1999, 2000) and maize (Jenison et al., 1981;  Guingo et al., 1998; Tuberosa, 2002, 2003), or 

simply not investigated although terminal drought conditions would prevail (Frahm et al., 2004). For 

example, upland rice was considered more adapted to drought conditions than lowland rice because it has a 

deeper and more prolific root system (Steponkus et al, 1980). In broad bean, deep cultivation enhanced 

water extraction by promoting deeper root growth (Rowse and Barnes, 1979). The capacity of roots to 

penetrate a compacted soil layer (Bengough et al., 1997, Unger and Kaspar, 1994, Clark et al., 2003) has 

been given importance in wheat (Gemtos et al., 1999, 2000; Ishaq et al., 2001; Kubo et al., 2004), cotton 

(Coelho et al., 2000), soybean (Flowers and Lal, 1998), and rice (Ray et al., 1996). Roots have been looked 

at for a better phosphorus uptake in common bean (for a review, see Lynch and Brown, 2001), or 

specialized types of roots for P acquisition in Lotus japonicus (proteoid roots) (Lambers et al., 2006). 

 

Roots for water supply and drought tolerance  

Usual assumptions on roots for water-limited conditions - Under conditions of drought, it has long been 

considered (Miller, 1916, cited by Kashiwagi et al., 2006, O’Toole and Bland 1987) that an increased root 

depth would contribute to better drought tolerance. Under such conditions, Jordan and colleagues (1983) 

have shown that deeper rooting would increase crop yield under drought stress. It has been reported that an 

increased soil volume explored would increase crop yield under water-limited environments (Jones and 

Zur, 1984). Since sorghum is deeper rooted than maize, a theoretical analysis has shown that increasing the 

root depth of maize to that of sorghum would contribute to a yield increase in most dry years (Sinclair and 

Muchow, 2001). Ludlow and Muchow (1990) have reviewed 16 traits that potentially contribute to drought 

tolerance. The three most important traits included plant phenology, osmotic adjustment, and rooting depth. 

Although in these studies, the type of drought imposed was not fully described, it is understood that roots 

would have an essential role under terminal drought conditions, i.e., for those crops grown on residual soil 
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moisture after the end of the rains, and where drought stress usually occurs after flowering. Whether roots 

contribute during intermittent drought still needs investigation, as there is virtually no published data on the 

topic. In any case, there is a consensus that root should contribute to a better adaptation to dry conditions.  

 

Current status of breeding for roots - Very limited efforts to breed for root traits have been undertaken, 

mostly because of the difficulties involved, the incomplete knowledge of the key parameters in the rooting 

characteristics that contribute to drought tolerance, and a lack of the knowledge of the range of variations 

available for root traits that can be used for breeding. Despite the importance given to roots in the drought 

scenario, few teams have undertaken breeding for root traits. Even if root QTL have been identified in 

certain crops such as rice (Champoux et al., 1995; Yadav et al., 1997; Price et al., 1997, 1999), no products 

have appeared. There is also some doubt on the contribution of root QTL to drought tolerance in rice (Price 

et al., 2002). In maize, where the root pulling force is well related to root length density (Merill and 

Rawlins, 1979; Sanguinetti et al 1998), Bolanos and colleagues (1993) have found a negative correlation 

between root pulling force and grain yield under drought conditions. In fact, no relation was found between 

the Root-ABA1 QTL on maize bin 2.04, and grain yield (Giuliani et al., 2005). Hence, to breed for roots, 

not only is a lot of work needed to explore the diversity for root traits: (i) methods still need to be designed 

to have sufficient throughput to deal with large number of accessions and with sufficient heritability to 

permit breeding, (ii) there is also an important need to establish a sufficient relationship between the 

measurement of root traits and their impact on yield under water limited conditions. 

 

Breeding efforts in chickpea – Some of these efforts have been made in chickpea (Serraj et al., 2004) where 

massive investments in labor have been made to measure roots in the field. Since field-based data is 

frequently associated with poor heritability that undermine the use of these traits for breeding, simpler 

systems have been designed for assessing variation in root traits, which consist of growing plants in 1.2 m 

tall and 16 cm diameter cylinders, and measuring RLD at every 15 cm depth interval at 35 days after 

sowing (Kashiwagi et al., 2006). Cylinder measurements show good agreement with depth and RLD 

determined in the field and have been used to explore the diversity for these traits in chickpea (Kashiwagi 

et al., 2006). Also by using this method, root depth and RLD are being phenotyped in RIL populations and 
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QTLs identified. In fact, a major putative QTL for RLD was identified in a population involving a profuse 

rooting parent ICC4958 and the contrasting Annigeri (Chandra et al., 2004).  

 

Although it is critical for deciding breeding strategies, the available information about the genetics of root 

characteristics is still limited, except for some reports on heritability estimates compared to the progress on 

agronomical and physiological studies of root characteristics (Krishnamurthy et al., 2004; Kashiwagi et al., 

2005). In chickpea, a major contribution of additive gene effects and additive × additive gene interactions 

on the root dry weight and root length density were reported (Kashiwagi et al., 2007). In addition, the 

consistent direction of the gene effects toward increasing root growth was also observed. Similar results 

were reported in common bean about gene components that control the expression of root dry weight and 

root surface area (Araujo et al., 2004). Similarly in cotton also, the gene effects of root characteristics 

showed that additive and additive × additive gene effects accounted for about 50% of the variation in root 

length in one of the two crosses tested at seedling stage (Eissa et al., 1983). Since, the root characteristics in 

both the legume crops including chickpea and common bean showed additive × additive epistasis, an 

advised selection procedure should be taken into account to exploit their interallelic interaction. This 

suggested that delaying selections to later generations and generating larger populations for selections 

could be important strategies for improving root systems of chickpea to exploit additive × additive 

interaction, as shown earlier (Upadhyaya and Nigam, 1998). By contrast, early-generation selection would 

be less effective. Further, it would be advantageous to backcross one or more times with recurrent parent 

before selection to enhance the probability of obtaining superior lines (Dudley, 1982). Since it is practically 

impossible to investigate a large population for RLD and RDW screening, marker assisted selection needs 

to be sought for proper screening of these characteristics. 

 

Breeding efforts in maize - Breeding for root traits is on-going in maize, where QTLs for root traits have 

been identified (Tuberosa et al., 2002, 2003). For this, a hydroponic system has been used in which primary 

and seminal root growth was assessed at about 3 weeks after germination. An obvious criticism of such a 

system is whether root growth differences in hydroponics would result in consistent root growth differences 

in a soil/field environment, and whether these would eventually be reflected in differences in drought 
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tolerance in the field. Although, previous work has shown a relation between seminal root traits in 

hydroponics and root lodging in the field (Landi et al., 1998; Sanguinetti et al., 1998), weak relations have 

been found between seminal root traits in hydroponics and root pulling resistance in the field (Landi et al., 

2001), and between seminal root traits in hydroponics and field grain yield under water stress conditions (r 

= 0.20) (Tuberosa et al., 2002). In fact, this work even showed a weak, significant but negative relation 

between primary rooting in hydroponics and the grain yield under water stress in the field (r = -0.27). Even 

so, a QTL on marker CSU61b in bin 1.06 appeared to have a major effect on root traits in hydroponics, co-

mapping with grain yield under both well-watered and water stress conditions (Tuberosa et al., 2002). 

Interestingly, one of these QTLs, Root-ABA1 on maize bin 2.04 was recently found responsible for both 

primary and seminal root growth and increased ABA concentration in the leaf (Giuliani et al., 2005, Landi 

et al., 2005). With the current advances in syntenic studies across the cereal species, more work is needed 

to clarify the functional role of roots in terminal drought tolerance QTL of pearl millet and staygreen QTL 

of sorghum, and to explore the putatively conserved genomic regions involved in rooting traits across 

cereal genomes. 

 

Genetics of root systems - To promote the use of root traits in breeding programs, a better understanding of 

the genetics of root development is needed. In this respect, although the QTLs for root traits above may not 

relate well to better performance in field conditions, the work from Tuberosa and colleagues has the merit 

of shedding light on the genomic portions involved in early root development, an aspect that several 

authors indicate as important to cope with water deficit (Araki and IIjima, 1998; Jesko, 2001). This is a first 

step to understand the genetics of root development. In that respect, recent studies are now trying to tackle 

in a more systematic way how root growth is genetically controlled, which was not possible before 

(Hochcholdinger et al., 2004; Malamy, 2005; Kashiwagi et al., 2007). Root traits have also been targeted 

by genetic transformation in tomato, where an Arabidopsis gene related to the vacuolar H+ pyrophosphatase 

(AVP1), led to an increased root growth under water deficit (Park et al., 2005), which was hypothesized to 

be related to a modification in the auxin fluxes. A recent study carried out at ICRISAT also shows the 

involvement of DREB1A transcription factor driven by a stress responsive promoter from the rd29 gene of 

Arabisopsis thaliana, on the development of groundnut roots under drought stress conditions (Vadez et al., 
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2007). These transgenic plants of groundnut variety JL 24 were grown in 1.2 m long and 16 cm diameter 

cylinders under well-watered conditions for 30 days before withdrawing irrigation in half of the plants. 

Forty days later, upon drought treatment the root growth was dramatically found to increase in the 

transgenics, whereas roots remained unchanged in the non-transgenic plants (Figure 4). This resulted in a 

higher water uptake from the soil. This work suggests that DREB1A triggers native genes of groundnut that 

might be involved in root development, and needs further investigations.  

 

Prospects for better exploiting the potential of root systems for drought - Overall, there have been a number 

of scattered studies on roots in different crops, documenting root systems and their putative contribution to 

drought tolerance. While these studies are of high value, they suggest a number of comments. First, a 

common feature in most of these studies is the very “static” manner in which the roots were assessed, i.e., 

destructive samplings at one or several points in time, giving virtually no information on the “dynamics” of 

root characteristics. From these studies, what particular root trait, or what particular aspect of root growth 

would contribute to a better adaptation to water deficit remain unclear. Second, the limited number of 

genotypes tested in each crop does not permit an exhaustive assessment of the range of variations available 

and the potential for breeding these traits. This drawback is mostly explained by the difficulty in studying 

roots, thus requiring a simplification of the methods used to evaluate a larger number of lines. Third, when 

testing the putative relation between differences in rooting traits and drought tolerance, genotype 

phenology (drought escape) was often the overriding factor explaining plant tolerance (Blum et al., 1977, 

Kashiwagi et al., 2006). Therefore, the exact contribution of roots to drought tolerance can only be tested 

once sufficient genetic variations in root traits are found within groups of genotypes sharing a similar 

phenology. Given these limitations and to remove the “static” approach used so far, we propose that our 

future approach on roots should focus on root functionality rather than morphology. We should first 

measure water uptake under water deficit, in a “dynamic” and precise way, in a large range of genotypes 

representative of the species’ diversity. Such lysimetric system is shown in Figure 5. This should carefully 

consider the phenology of genotypes, and determine the relation between a given pattern of kinetics/volume 

of water uptake and drought tolerance. Once contrasting genotypes are identified, root developmental and 

morphological patterns can be investigated thoroughly.  
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Root for water supply and nutrient uptake in poor soil fertility of the SAT 

The objective of this section is not to make an exhaustive review of the contribution of roots to nutrient 

uptake, especially phosphorus (P). There are several reviews and reports on the root traits related to P 

uptake (Lynch and Brown, 2001; Sinclair and Vadez, 2002; Hinsinger et al., 2003; Gahoonia and Nielsen, 

2004, Lambers et al., 2006). Instead, we will focus on how roots can contribute to the acquisition of both 

water and nutrients, with a focus on P, in an integrative way rather than looking at roots for nutrients and 

for water separately. 

 

Root architecture needed for water and nutrient uptake - Both nutrients and water are concomitantly 

limiting factors in many areas of the semi-arid tropics (SAT). It is increasingly becoming clear that in these 

areas, poor fertility is a primary factor for poor crop performance rather than water stress (Payne et al., 

1990). These authors found that the poor fertility limited root development in pearl millet that was unable 

to capture the water contained in the profile and water drainage occurred below the root zone. As a 

consequence, plants suffered from drought stress when rains receded, although water was available deeper 

in the profile (Payne et al., 1990). Root establishment in poor fertility soil is essential to ensure full use of 

available water. To acquire nutrients, the development of secondary roots is needed mostly in the soil 

surface layers where the nutrients usually concentrate and their absorption is made easier because of higher 

microbial activity such as in bean (Lynch and Brown, 2001; Lynch and Beebe, 1995; Liao et al., 2001) and 

wheat (Manske et al., 2000). To acquire water, in contrast, profuse rooting in the deeper soil layers would 

be required. It appears from a recent study that P acquisition is less in deeper-rooted plants than in shallow-

rooted plants (Ge et al., 2000), thus indicating that shallow and deep rooting are rather antagonistic 

developments (Lynch and Brown, 2001), as suggested earlier by Chopart (1983). Yet, there is a need to 

identify rooting patterns that allow both nutrient acquisition and water uptake. The use of molecular 

markers for these two traits – water and nutrient acquisition – might be useful to break this negative 

linkage, at least partially, if effective QTL for these two traits can be identified. 
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How to maintain nutrient uptake in soils that frequently dry - In addition to the fact that , as Lynch and 

Brown (2001) admit, a “nutrient foraging” phenotype would have a  poorer capacity for water uptake from 

deep in the profile, such a phenotype may also not fit in   environments where the top surface is likely to be 

dry for long periods. Therefore, the hypothesis that a shallow rooting pattern contributes to an enhanced 

nutrient acquisition in nutrient deficient environment needs to be revisited when top soil drying is a 

common feature. Some work would also be needed to assess the volumetric soil moisture threshold where 

nutrient acquisition is no longer possible. The question then remains, how to ensure superior nutrient 

uptake in these poor nutrient environments? A shallow root system may still be valid for rainfed crops of 

the SAT where the top soil would be re-wetted periodically and in particular in unfertilized soils where 

most of the nitrogen would be present in the top surface and would need to be absorbed before being 

leached down the soil profile. A more profuse root system in this case might also contribute to both water 

and nutrient acquisition. For instance, it has been shown that pearl millet roots can expand both 

horizontally for over a meter and vertically in a sparse stand (Bruck et al. 2003a,b). Helping early plant 

establishment may be also a way to ensure that a minimum root development has occurred to take full 

benefit of the on-going rains. The microdosing method used in West Africa (Tabo et al., 2005) would be 

one more option. A more recent work shows that a minute application of P close to the root of pearl millet 

seedlings helps plant establishment and growth under P limited environments (Valluru et al., 2007), and 

pearl millet seed coating with P is also showing very similar results (unpublished results). Yet, the presence 

of water around the seed is a prerequisite for seedlings to take up nutrients, and the question of nutrient 

absorption in nutrient and water scarce environments remains unresolved. The hydraulic lift may be part of 

the answer. 

 

Hydraulic lift – This is an interesting root feature that could be relevant for the absorption of nutrients in 

dry top soil. This phenomenon (Caldwell et al., 1991) has been reported in different crops and particularly 

pigeonpea (Wan et al., 2000; Sekiya and Yano, 2002) and it is related to the morphology of the root system, 

in particular, the presence or absence of an endodermis. Under conditions of high transpirational demand, 

the pressure gradient in the root (lower water potential than in the soil) is in favor of water absorption by 

the roots. During the night, when there is no transpiration and only a modest osmotic gradient, the soil 
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water potential is usually lower than the potential in the roots. Unless there is a particular mechanism in 

place, water would normally flow back to the soil, following pressure gradients. That backflow is normally 

prevented by the endodermis which acts as a barrier to the flow of water from the root to the soil (Freundl 

et al., 2000). For deep rooted crops, the roots are in contact with wet soil and the osmotic gradient is 

sufficient to allow water uptake by the deepest roots. By contrast, the shallow roots are exposed to a dry 

soil, and the pressure gradient between roots lacking an endodermis and soils in these layers allows water 

to flow back to the soil. This phenomenon is called the hydraulic lift and consists of lifting water from the 

deep layers to the top layers. Such a feature might help take up nutrients from the rhizosphere in the top soil 

in environments where drying is frequent. A species like pigeonpea, in which hydraulic lift has been 

reported, and which is also known to perform well under low soil P (Ae et al., 1991), might be of great 

interest. Last but not the least, an interesting study with maize hybrids showed that the drought tolerant line 

was able to hydraulically lift water from the deep and wet soil layers to the shallow and dry soil layers 

during the night (Wan et al., 2000). The capacity for hydraulic lift is directly related to differences in the 

anatomy of the root cylinder (Figure 1) and likely related to the absence of an endodermis (Steudle, 2000a). 

 

Relation between nutrient deficiency and WUE – To achieve a high WUE, plants need to maintain a low 

CO2 concentration in the stomatal chamber, which can be possible if the photosynthetic rate is high. 

Nutrient deficient plants (in particular N and P) can have decreased rates of photosynthesis, explaining a 

putatively close association between water and nutrients with regards to WUE. To account for poor 

fertility, sparse planting densities are commonly used which dramatically increase the evaporation 

component of the crop’s evapotranspiration, and decreases water use overall (Payne 2000). Moreover, in 

nutrient depleted environments, one factor involved in the calculation of WUE (Tanner and Sinclair, 1983) 

can also be decreased by low fertility (“m” factor explained by Payne 2000, citing DeWit, 1958). Other 

evidence indicate that WUE drops in different crops cultivated under nutrient deficient conditions (Bruck et 

al., 2003a,b). Finally, under nutrient limited conditions, it has been shown that the hydraulic conductance of 

plants decreases (Clarkson et al., 2000), although no evidence of any genetic differences in this decrease 

have been reported. Therefore, it is clear that the nutrient and water limitations interact closely, and that the 

root hydraulic conductance is involved.  
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Root characteristics and salt stress tolerance 

In this part also, the purpose is not an extensive review on salt stress tolerance, but to focus only where 

roots could be of importance, focusing on certain aspects that, we feel, have not received lots of attention. 

 

How roots interact with salt stress? - Under saline conditions, roots are obviously the plant organs exposed 

to salt stress. There are different ways in which roots play an important role in the plant response to salt 

stress: (i) avoiding the entry of sodium in the root cell or favoring its exclusion in the root medium; (ii) 

avoiding its loading in the xylem vessels, to prevent its build up in the shoot tissues; and (iii) signaling to 

the shoot via hormones such as ABA. Here, we will not review exhaustively the exclusion of Na from the 

root cells since (i) has received much attention and reviews are available (Tester and Davenport, 2003; 

Munns, 2002; Munns et al., 2002). We would look at (ii) and (iii) where much less work has been done, 

and where again the root architecture as described initially appears to matter.  

 

Roots for excluding Na from the plant - Sodium (Na) exclusion from the shoot is indeed the major trait 

considered important to confer salinity tolerance in several crops. As a consequence, a lot of the work 

currently focused on improving the capacity of roots to deal with Na exclusion (item (i) above), either by 

exploiting the natural variation for this trait, like in wheat (Munns et al., 2002, Munns and James, 2003), or 

in rice (Gregorio et al., 1993), or through genetic transformation where there is a plethora of reports (eg: 

Apse et al. 1999; Shi et al. 2003; Vinocur and Altman, 2005; Denby and Gehring, 2005; Chinnusamy et al., 

2005, Mathuis, 2006 and most citations there in). In this respect, breeding is currently on-going at IRRI, 

where salt-exclusion QTLs have been found and are in the process of being introgressed in locally adapted 

lines to confer them the adaptation to salty conditions. Nevertheless, whether salt exclusion from the shoot 

is the key factor explaining differences in salt stress tolerance is still an issue that requires clarification 

since very few studies have investigated the relation between a accumulation in the shoot and salt tolerance 

based on yield evaluation. We recently reported no such relation in a large set of chickpea genotypes 

(Vadez et al., 2007). In fact, the reason for the differences in salt accumulation in the shoot in many studies, 

in particular those using transgenics, may be the use of hydroponic systems, which are also known to affect 
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the structure of the root systems, since hydroponically grown plants lack an exodermis in contrast to 

aeroponically grown plants (Freundl et al., 2000; Hose et al., 2001) and therefore the related hydraulics. For 

instance, salinity appears to induce the subberization of the hypo- and endodermis (Shannon et al., 1994), 

or the development of the exodermis (Reinhardt and Rost, 1995). More arguments follow thereafter, to 

justify a closer look at how the root structure may explain a great deal of how much salt eventually reach 

the shoot.  

 

Loading of salt in the root xylem and relation with the composite transport model - Much less has been 

done to avoid the loading of salt in plant organs and we feel that it is an important issue to consider. Here, 

the composite transport model of water uptake may help explain genotypic differences in the loading of salt 

in the xylem. As we saw earlier, plants take up water from the soil through an apoplastic or cellular 

pathway (Steudle, 2000b) (Figure 1). In the apoplastic flow, the reflection coefficient of the minerals is 

close to zero, and minerals are dragged in the water flow until the endodermis, as previously found with 

ABA (Hartung et al., 1998; Freundl et al., 2000), or the exodermis (Hose et al., 2001). There is reason to 

believe that crop genotypes having a less developed endodermis, or no/loose Casparian band, and a 

predominant apoplastic pathway for water uptake (such as maize) may allow salt loading into the xylem. 

By contrast, plants with a well developed endodermis, or favoring a cell-to-cell pathway for water uptake 

(like barley, Steudle 2000a), may have a more efficient system to filter salt before they reach the xylem. 

We believe that further work is needed to test whether contrasting materials for salt tolerance are related 

with putative differences in the way they take up water from the root hydraulic standpoint. Little work has 

been done to explore that hypothesis, although reports show that indeed a higher apoplastic water uptake 

was related to a higher accumulation of salt, in intravarietal selections of line IR36 with different degrees of 

salt accumulation (Yadav et al., 1996; Yeo et al., 1999). In another report, most salt tolerant genotypes of 

Prosopis strombulifera had an early suberization of the endodermal cells (Reinoso et al., 2004). An 

interesting “coincidence” is that plants displaying the hydraulic lift behavior reported above would also 

lack the capacity to “filter” salt through the endodermis. Pigeonpea is one such example, and it happens to 

be extremely sensitive to salinity compared to other crops (Srivastava et al., 2006). Therefore, an 

investigation of salt tolerance with regard to particular differences in the root morphology such as the 
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presence of Casparian bands, or subberization of the cells at the level of the endodermis, may provide 

interesting insights. Looking into those mechanisms may also help understand why the effects of salt stress 

are higher under high VPD conditions, since under such conditions, the proportion of water channeled 

through the apoplast would be higher (Steudle, 2000a).  

 

Root signaling under salt stress - A third area where roots are involved and where relatively little attention 

has been paid is related to signaling. As in the case of drought, plants respond to salt stress by producing 

ABA that result in stomatal closure and reduced water/salt uptake (Fricke et al., 2006). Work on sorghum 

and salt stress has shown that ABA was responsible in the adaptation to salt stress when plants were pre-

treated with ABA (Amzallag et al., 1990), and suggest that part of the plant adaptation to salt could be 

mediated by differences in the root production of ABA.  Also, salt stress is reported to decrease the 

hydraulic conductance of roots (Tyerman et al., 1989). As for drought, there seems to be both chemical and 

hydraulic signals involved in the response to salt stress. A better understanding of these would help 

prioritize the approach to increase tolerance to salt stress. In any case, these signals would contribute to a 

decrease in the transpiration rate. This would have two antagonistic effects: (i) a beneficial effect of 

decreasing the influx of salt accompanying the water flux into the root; and (ii) a limitation to the 

transpiration water to support carbon fixation and, therefore, a loss in biomass accumulation. We can 

clearly see that an optimal biomass production under salt stress would become a tradeoff between both 

aspects. Work is needed to determine how each of these antagonistic effects vary across genotypes reported 

to differ in salt tolerance. For instance, we have recently started work to measure the apparent Na 

concentration in the xylem and found very large differences between groundnut and pigeonpea genotypes 

that vary for tolerance. Yet, we have shown that the rate of transpiration drops relatively more upon salt 

stress in salt tolerant groundnut genotypes than in sensitive ones. By contrast, salt tolerant groundnuts 

compensate for more limited transpiration rate by increasing their transpiration efficiency (TE) to a 

relatively greater extent. Therefore, the salt-tolerant genotypes of groundnut, apparently manage to reduce 

their transpiration stream (and the related Na flux), but compensate the carbon fixation loss by increasing 

their levels of TE relatively more than salt sensitive genotypes. 
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Root dynamics – Toward capturing volume and kinetics of water uptake  

We know little on the range of variations for root traits, their development pattern, and their contribution to 

drought tolerance. In most of the previous studies, knowledge has increased mostly on root morphology 

(Mc Cully, 1995), and traits such as RLD, depth, or weight, rather than root functions (water uptake, 

growth kinetics), have been measured (e.g. in  Merill and Rawlins, 1979). Yet, water uptake is perhaps the 

most important component of a simple crop growth model defined by Passioura (1977) (Y = T x TE x HI, 

where Y is the yield, T is transpiration and accounts for the amount of water taken up by roots, TE is 

transpiration efficiency, and HI is the harvest index). So, the first requirement of roots is a high water 

uptake. 

 

Root length density and water uptake - How much water is taken up would obviously relate somewhat to 

the RLD, but this link is still unclear because of the lack of data comparing the two parameters. Several 

authors concluded that RLD and water uptake is related (Passioura, 1983; Monteith, 1986, Lafolie et al., 

1991). This view is challenged by other studies showing poor relations between water uptake and RLD 

across several cereals and legumes (Hamblin and Tennant, 1987; Dardanelli et al., 1997; Katayama et al., 

2000, Amato and Ritchie, 2002). In fact, it appears that cereals and legumes have large differences in their 

specific root water uptake, because of finer roots in the cereals than in legumes. Nevertheless, the relation 

between RLD and water uptake remains weak even after considering cereals and legumes separately. The 

above authors conclude that legumes have more abundant metaxylem vessels, which decrease their axial 

resistance to water flow, explaining the higher rate of water intake per unit root length. However, it has also 

been shown that a small length of roots in deep layers where water is plentiful would be sufficient to amply 

supply water to the plant when the top soil is dry (Gregory et al., 1978; Sharp and Davies, 1985). This 

would logically offset the linear relation between water uptake and RLD. It would also dismiss the 

hypothesis of differences in axial resistance limiting the rate of water flow across cereal and legumes, in 

agreement with Steudle’s hypothesis (2000a&b). In any case, the lack of relation between water uptake and 

RLD agrees well with our data on groundnut (unpublished data). By contrast, we found a good relation 

between water uptake and RLD in DREB1A groundnut transgenics, where a higher water uptake of 

transgenic plants under water deficit was well related to higher RLD below the 40 cm depth (Vadez et al., 

 19

An Open Access Journal published by ICRISAT
________________________________________________________________________________________________________

SAT eJournal | ejournal.icrisat.org                                                                                             December 2007 | Volume 4 | Issue 1



2007). Hence, there are clearly some controversies over the water uptake and RLD relationship. Finally, 

water uptake should be the prime target as suggested previously (McIntyre et al., 1995; Dardanelli et al., 

1997) and such water uptake is unlikely to be dependent on differences of axial resistance to water flow. 

New models have been designed to take this into account (Dardanelli et al., 2004). 

 

Water uptake and phenology - Under drought conditions, the primary factor contributing to better yield is a 

suitable phenology, adjusted to the water available from rainfall or soil moisture to allow the crop to 

complete its life cycle (drought escape mechanism) (Serraj et al., 2004). Several studies indicate that 

“superior” root traits contribute to drought tolerance of genotypes provided these have a suitable phenology 

(Blum et al., 1977, Kashiwagi et al., 2006). Therefore, while measuring the volume of water taken up by 

roots is certainly an important factor, understanding the kinetics of water uptake, and how this kinetics 

relates to the phenological stage of a plant, are equally important issues. This view is shared by Boote et al. 

(1982, cited in Meisner and Ketring, 1992), who argue that sufficient amounts of water at key times during 

the plant cycle is more important than across the whole cycle. We hypothesize that these key stages may be 

the reproductive stages and the later stages of grain filling. Previous work on roots indicates that root 

growth can persist at very different stages and under different conditions such as drought (Chopart, 1983; 

Hafner, 1993; Ketring and Reid, 1993), although genotypic assessment for this is lacking. A key missing 

link in these studies is how the reported root growth relates to differences in water uptake, and how much 

the water uptake varies among genotypes over the growth cycle   Therefore, our working hypothesis is that 

differences in root growth under drought during reproduction and the latest part of grain filling would result 

in differences in water uptake, in turn resulting in differences in reproduction (seed number) and better 

grain filling (see next two paragraphs). We therefore suggest that the genotypic differences for water 

uptake during these key periods would be extremely difficult to determine by measuring only the roots, 

especially because of the usual large experimental errors in root measurements (Figure 2 & 3). 

 

Water uptake and plant reproduction – Plant reproductive stages is extremely sensitive to any type of stress 

(Boyer and Westgate, 2004). Here, we consider the reproductive stages as the sequence of events between 

the emergence of a flower bud to the beginning of grain filling. It is important to understand the kinetics of 
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water supply under stress during these stages, the existence of any genotypic difference in the kinetics, how 

such differences finally relate to yield differences. Our recent data show that groundnut plants grown in 

long and large PVC cylinders and exposed to water stress during flowering had very distinct patterns of 

water use, where some genotypes had a “liberal” behavior and maximized transpiration during the first 10 

days following withdrawal of irrigation, but ran short of water during later stages (Figure 6). Others had a 

“conservative” use of water, limited their transpiration quickly after withdrawing irrigation, but were able 

to extract water for a longer period of time. The latter genotypes also had higher ABA content, both under 

well-watered and under water stressed conditions (unpublished data). Although we did not test whether 

these differences in kinetics had any bearing on the relative yield, but the data suggests that the stress 

intensity suffered by plants during their reproduction, probably varied across lines in relation with the 

differences in the kinetics of water uptake and in ABA. More work is needed to elucidate these differences.  

 

Water uptake and grain filling - Differences in water uptake during grain filling would affect 

photosynthesis and consequently the supply of carbohydrates to the maturing grains. For instance, a good 

relation between RLD in the deep layer and the HI (indicative of grain filling) was observed, especially 

under severe drought conditions (Kashiwagi et al., 2006). A similar phenomenon may also prevail in 

sorghum where the staygreen phenotype correlates with better grain filling. We consider that the 

maintenance of physiologically active and green leaves under terminal moisture stress possibly provided a 

minimum water uptake to sustain growth under these conditions, which is in agreement with a deeper 

rooting of staygreen genotypes under water stressed conditions (Vadez et al., 2005) (Figure 3). Such water 

uptake would in turn maintain photosynthetic activity and carbohydrate supply to the growing grain. We 

are currently testing a similar hypothesis to study the putative role of root water uptake during the grain 

filling in pearl millet genotypes introgressed with a terminal drought tolerance QTL that contributes to an 

enhanced panicle harvest index (PNHI). A better grain filling might be explained by enhanced water uptake 

toward the late stages of grain filling. We hypothesize that the water needed to sustain grain filling may be 

relatively small and due to minute differences in the root development (depth, RLD). Such differences 

would be difficult to capture by a physical assessment of roots, but could be measured by an assessment of 
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water uptake, which would “integrate” the benefit of slight RLD differences over time. Work would also be 

needed to determine the threshold amount of water required to sustain grain filling. 

 

Water uptake and soil characteristic – One difficulty to assess previous work on root also relates to the 

large differences in soils used to investigate roots. In this review, we pay a particular attention to the 

hydraulics of roots, as a way to explain part of the plants response to a range of stresses. The hydraulics of 

roots under conditions of receding moisture is obviously closely related to the hydraulic properties of the 

soil, such as the soil porosity. A recent theoretical analysis concluded that the transpiration response of 

plants is relatively uniform across a range of soils in which transpiration decline usually occurs when about 

60% of the volumetric soil water has been depleted (Sinclair, 2005). However, the soil type would 

influence its hydraulic properties in a way that would determine the hydraulic integrity of the soil-plant-

atmosphere continuum. Here, how intention is not to review that complex issue and we rather relate to 

recent reviews where the hydraulic properties of the soil and of the plants are taken holistically (Taylor and 

Klepper, 1978; Sperry et al., 1998, 2002; Jackson et al., 2000; Passioura, 2002; Sinclair, 2005). We also 

argue here that the use of modeling to predict soil water extraction (e.g. Jamieson and Ewert, 1999; 

Dardanelli et al., 2004) may ease the understanding of the role of soil in water extraction by plants exposed 

to progressive drying. 

 

The metabolic / development cost of root – Whether the metabolic and development cost of roots is 

“expensive” for the plant, and whether the overall carbon/nutrient balance between roots and shoots can 

significantly impact the economic yield are still subject to debate. For instance, Passioura (1983) 

hypothesized that yield could be increased by decreasing roots as they represent a high energy investment. 

Van der Werf (1988) calculated that the ATP cost of producing one gram of root was equivalent to the 

maintenance cost of that same gram for 10 days. This cost could even be higher under stress conditions 

since, Eissentstat (1992, 1997) estimated that root carbon cost could reach about 40% of total plant cost 

under phosphorus stress. This would explain the high turnover of root systems, i.e., the fact that plants shed 

roots to limit their metabolic cost which represents a net carbon contribution to the soil (Krauss and 

Deacon, 1994). Siddique and colleagues (1990) found that wheat genotypes with high HI would have lower 
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root/shoot ratios, indicating less investment in roots. In fact, the turnover of roots can be relatively rapid, 

with a half life of 30-40 days in groundnut (Krauss and Deacon, 1994). Therefore, even if the root/shoot 

ratio at a given point in time in many species is only between 10 and 40%, a complete turnover of roots in 

about 40 days would bring the root/shoot ratio close to 100% over the entire life cycle. This would be a 

substantial part of plant carbohydrate and protein investment. While this is certainly an important 

characteristic for the long term sustainability of low input agro-ecosystems, in relation to the organic matter 

returned to the soil, it is potentially an immediate yield decreasing factor in case the development of large 

root systems is not needed. Yet under conditions of limited soil P or limited plant available water, this 

investment may be necessary to support shoot growth. Therefore, a critical need is to assess the target stress 

conditions under which a significant investment in root mass would contribute to a better drought 

adaptation. Interestingly, it has been shown in several studies that elevated CO2 would contribute to an 

increased root growth (Rogers et al., 1992, 1996). Work would also be needed to investigate whether 

differences in the root hydraulics, i.e., conferring differences in resistance of roots to water flow, could 

minimize the requirement in terms of RLD to capture water.  

 

Water saving behavior – Relation with leaf conductance to water 

In the three-component yield architecture model presented above (Passioura, 1977), water uptake and water 

use efficiency (WUE) are called “drought avoidance” parameters, i.e., plants would “avoid” drought by 

either tapping into more water from the soil, or by using that water better (Serraj et al., 2004). Eventually, a 

higher WUE would save water in the soil profile, which would help sustain water uptake by plants. The 

root-related drought avoidance is closely intertwined with the WUE-related drought avoidance, although 

these components have been considered to be independent. Therefore, more work is needed to better 

understand their links and complementarities.  

 

Can higher TE contribute to saving water in the soil profile? - It has been previously stated that there was 

little hope of finding differences in the intrinsic transpiration efficiency (TE, the instantaneous rate of 

carbon fixation divided by the instantaneous rate of transpiration, an important component of WUE in 

plants) in plant genotypes of a given species (Tanner and Sinclair, 1983). However, genetic variations for 
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TE have been found in various crops like wheat (Ehdaie et al., 1991; Condon et al., 2002, Rebetzke et al., 

2002, Richards et al., 2002) cowpea (Hall et al., 1992; Ismael and Hall, 1992), bean (Elheringer et al., 

1991), and groundnut (Hubick et al., 1986; Wright et al., 1994, Bindhu madava et al, 1999 Krishnamurthy 

et al., 2007). These differences are explained by more active mesophyll efficiency (Uday Kumar et al., 

1998), or a lower stomatal conductance such as in the wheat cultivar Quarrion (Condon et al, 2002) or in 

transgenic groundnut (Bhatnagar Mathur et al., 2007).  In a recent large screening of 440 representative 

groundnut germplasm and breeding lines, we found a 4-fold range of variation for TE (unpublished results), 

a range of variation which has not been reported before. The question remains whether a better TE 

contributes to water saving in the profile that can be used by roots during grain filling.  

 

A maximum rate of transpiration to save water in the soil profile - Another aspect of water saving relates to 

the control of the overall water loss at the leaf level. Recent upstream work on the ERECTA gene, involved 

in the regulation of TE in Arabidopsis, shows that ERECTA plays a role not only on the regulation of the 

photosynthetic system, but also on the stomatal conductance (through stomata density) (Masles et al., 

2005). We have observed before that certain species such as pearl millet in semi-arid conditions do 

maximize transpiration even if the vapor pressure deficit (VPD) is high (above 2.5 kPa) (Squire, 1979; 

Henson and Mahalakshmi, 1985). In the work reviewed by Bidinger and Hash (2004), no attention was 

paid to possible genetic variations in this strategy, although recent modeling data show that a maximum 

daily transpiration rate would indeed contribute to saving water in the soil profile and would increase TE 

(Sinclair et al., 2005). We recently found that a major difference among pearl millet genotypes having 

similar phenology but differing for terminal drought tolerance was indeed a lower rate of water loss per unit 

of leaf area (transpiration over a period of 1-2 days divided by leaf area) in terminal drought tolerant 

genotypes (unpublished data). These differences have been measured under well-watered conditions, 

indicating that this trait is constitutive. These results have been observed very consistently across 

experiments, either on whole plants taken at different stages or on detached leaves over short periods of 

time. This index, which reflects the leaf´s stomatal conductance over a period of time, would save water 

and make it available for the later stages of the crop cycle, in particular grain filling. It may not be a 

coincidence that the phenotype used to identify QTLs for terminal drought tolerance was the panicle 
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harvest index, a direct measurement of grain filling in plants. Water saving from a maximum rate of 

transpiration would decrease the proportion of water used before anthesis, and fits well with an old 

hypothesis by Passioura (1983) that a higher proportion of water loss after anthesis would contribute to 

better grain filling under water stress conditions, a hypothesis recently revived by Hammer and colleagues 

in sorghum (2007).  

 

Sensitivity of stomata to VPD to save water in the soil profile - Pearl millet has been found to be sensitive 

to high VPD levels, usually above 3-4 kPa where the stomata close to avoid wasteful water loss (Squire, 

1979). This is a well-known characteristic in crops growing in dry environments where stomata close when 

the evaporative demand is too high to be supported by the maximum water supply by the roots. However, 

possible genotypic variations for the sensitivity to VPD have not been studied, especially at intermediate 

VPD levels (2-3 kPa) where it is still assumed that genotypes would maintain their stomata fully open. 

Recent studies on a long known “slow-wilting” genotype of soybean (PI416937) used in breeding drought 

tolerant varieties indicates that the transpiration increased linearly in response to increases in VPD until 

about 2 kPA in all genotypes. Above these levels, transpiration rates remained essentially constant. In 

genotype PI416937, at least a partial stomatal closure did occur above 2.0 kPa, whereas other genotypes 

maintained a linear increase in transpiration up to VPD values of about 3.5 kPa (Sinclair et al., 2007). A 

consequence of this trait is that the leaf canopy temperature would increase under well-watered conditions, 

making it a fairly easy trait to measure using infrared thermometers, provided it is measured at the adequate 

VPD above 2 kPa. In fact, there is some indirect evidence of this “slow-wilting” trait in the canopy 

temperature literature. For instance, we believe that the differences in the canopy temperature between 

genotypes Senegal Bulk and HMP559 reported in Singh and Kanemasu (1983) are likely to be due to either 

differences in the sensitivity of stomata to VPD in these lines, or differences in their rate of water loss per 

unit leaf area. In our recent work, we have gathered evidence of such contrasting behavior in pearl millet 

genotypes that differ in terminal drought tolerance (unpublished). Therefore, further work is needed to 

assess whether this trait exists in other crops, and to use it for breeding varieties with water saving 

behavior.  
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Relation with hydraulic conductance - Signaling aspects  

We have seen above that differences in how leaves would regulate their water loss would indirectly save 

water in the soil profile and allow roots to take up water for longer periods of time. In turn, roots are the 

sensors of drought or salt stresses and can relay the signal to shoots through hormones such as ABA 

(Davies and Zhang, 1991, Davies et al., 2000), through hydraulic signals in the case of more severe stresses 

(Sperry et al., 2002), or through an integration of chemical and hydraulic signals (Tardieu and Davies, 

1993, Comstock, 2002). Such signaling would eventually contribute to decreasing stomatal conductance 

and would mechanically act on increasing the overall water use efficiency of plants (Farquhar et al., 1982, 

1988, 1989, Condon et al., 2002). 

 

Can differences in root hydraulic conductance explain a maximized transpiration rate? - The reason for 

differences in the rate of water loss per unit leaf area, or in the sensitivity of stomata to VPD (see above) 

are unclear and may involve some sort of differences in the overall plant conductivity to water. Assuming 

that there is no limitation in the axial conductance to water, the main “points” where conductivity can vary 

are at the leaf-atmosphere interface or at the root-rhizosphere interface. As far as roots are concerned, 

differences in the two later traits above could be explained by constitutive differences in the hydraulic 

conductance of roots. In fact, only hydraulic signals from the roots could explain the rapidity of the 

response to an increased VPD. Hence, it would be very interesting to look at the contrast for terminal 

drought tolerance in pearl millet from the angle of root hydraulic conductance; for example, by looking at 

the relative contribution of the cell-to-cell and apoplastic pathways to the root hydraulic conductance. 

Indirect assessment of this could be done by measuring the effect of mercuric chloride, a specific inhibitor 

of aquaporin on the rate of transpiration in plants (Maggio and Joly, 1995, Maurel, 1997; Maurel and 

Chrispel, 2001; Tyerman et al., 2002; Martre et al., 2002).  

Work has also been done about 25 years ago on the contribution of small xylem vessels to high axial 

hydraulic resistance (Richards and Passioura, 1981a&b; Passioura, 1983). In this work, certain wheat 

genotypes had smaller xylem vessels that contributed to their increased WUE. In any case, it would also be 

interesting to compare the size of xylem vessels in pearl millet genotypes that contrast for terminal drought 

tolerance and rate of water loss per unit leaf area.  
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Root signaling to control stomata movement - The contribution of roots to the water use efficiency of 

transpiring organs may be through signaling. Roots are the primary organ exposed to a range of abiotic 

stresses and the signaling of these stresses to the shoot through ABA is well established (Zhang and Davies, 

1991a&b, Stoll et al., 2000). It is hypothesized that the signaling takes two steps: (i) a first step at early 

stages of drought stress when ABA is transported to the shoot causing a drop in stomatal conductance and 

leaf expansion rate, and (ii) a second step at higher stress intensities where hydraulic signals are received 

by the shoot and contribute to de novo synthesis of ABA in the leaves, thereby accentuating the effect of 

ABA (Saab and Sharp, 1989). Such signaling also occurs under conditions of rapid stress imposition to 

avoid cavitation in the xylem vessels (Sperry et al., 2002).  The ABA-related drop in stomatal conductance 

would contribute to an increase in TE. ABA also contributes to the development of roots (Saab et al., 1990; 

Sharp et al., 1994; Munns and Cramer, 1996; Spollen et al., 2000) and then to the water uptake. Hence, it 

would be very important to study the signaling from the roots to understand how water use efficiency is 

regulated in the shoots. It was interesting to note that in our work where groundnut genotypes were tested 

in long PVC lysimeters (Figure 4), the two genotypes showing the “conservative” behavior also had a high 

level of ABA in their leaves, even under well-watered conditions. We also found that pearl millet 

genotypes having a lower rate of water loss per unit leaf area had a higher ABA concentration in the leaves 

under well-watered conditions. The origin of this ABA and the role of roots in these differences require 

further investigation. 

 

Conclusion 

Roots play a central role in their response to many abiotic stresses, either directly or indirectly through their 

involvement in signaling. We have indicated in this review that many aspects of the plant response to 

drought, nutrient, and salt stress can be studied from the angle of the root structure and hydraulics, 

especially in the way a plant acquires water. In the case of drought stress, it is evident that there is a large 

deficit of knowledge on the contribution of roots to tolerance to water deficits, but that filling in this gap 

will likely require a dramatic improvement in the methods used to investigate roots. Our inclination is to 

focus more on measuring water uptake by roots and relatively less  on understand the root structural 
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development needed to increase water uptake. Obviously, such an approach needs to have a sufficiently 

high throughput to allow the assessment of large number of genotypes. Regarding the role of roots in 

response to nutrient stress, there is a need to look at both water and nutrient stress in a comprehensive way, 

as our target is the semi-arid tropic where both stresses are concomitant. It is also likely that root structure 

differences will partly explain differences in the salt tolerance of plants. 
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“vacuolar” pathway

Apoplastic pathway

Symplastic pathway

Figure 1. Representation of a root cylinder and the pathways for water and nutrient 
movements in roots (reproduced from Steudle, 2000b, with permission from the author). The 
vacuolar and symplastic pathways represent together the cell-to-cell pathway and cannot be 
easily distinguished.  
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Figure 2. Root DW at different depths under drought conditions, expressed in % of the 
root dry weight in the 0-30 cm layer, in senescent (blue bars) and staygreen sorghum (red 
bars) (RSG 04012 is a re-selection from a cross between E36-1 and R16). Staygreen
materials tend to root deeper than senescent ones. Experimental (SE) errors at measuring 
roots are usually very large.
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Figure 3. Root DW at different depths, expressed in % of the root dry weight in the 0-30 cm 
layer, in drought sensitive and tolerant pearl millet (ICMR 01029 and ICMR 01031 have 
H77/833-2 background and are introgressed with a terminal drought tolerance QTL from donor 
PRLT 2/89-33). Bars represent SE.
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Figure 4. Root dry weight (g plant-1) in 5 transgenic events and wild-type JL24 grown in PVC 
tubes (1.2 m long, 16-cm diameter) under well watered conditions (WW) and exposed to 
water stress (WS) from 30 days after sowing. Bars represent SE.
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Figure 5. Lysimetric system newly used at ICRISAT to evaluate plant water uptake in PVC 
tubes (1.2 m long, 20-cm diameter). The length and diameter of the tubes are designed so that 
the soil volume available to each plant is equivalent to the soil volume available under field 
conditions at current sowing densities (for groundnut and chickpea). The system is used here 
for the evaluation of transgenics in P2 facilities. A larger system has been set up outdoors for 
germplasm screening.
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Figure 6. Cumulated evapotranspiration (g plant-1) in four groundnut cultivars in the first 10 
days after being exposed to stress, or between 10 and 40 days after being exposed to stress. 
Plants were grown in PVC tubes (1.2 m long, 16-cm diameter) under well watered conditions 
until 30 days after sowing  and then exposed to water stress (WS) for 40 days. Bars represent 
SE. 
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