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Abstract Despite the availability of newer approaches,

traditional hierarchical clustering remains very popular in

genetic diversity studies in plants. However, little is known

about its suitability for molecular marker data. We studied

the performance of traditional hierarchical clustering

techniques using real and simulated molecular marker

data. Our study also compared the performance of tradi-

tional hierarchical clustering with model-based clustering

(STRUCTURE). We showed that the cophenetic correla-

tion coefficient is directly related to subgroup differentia-

tion and can thus be used as an indicator of the presence of

genetically distinct subgroups in germplasm collections.

Whereas UPGMA performed well in preserving distances

between accessions, Ward excelled in recovering groups.

Our results also showed a close similarity between clusters

obtained by Ward and by STRUCTURE. Traditional

cluster analysis can provide an easy and effective way of

determining structure in germplasm collections using

molecular marker data, and, the output can be used for

sampling core collections or for association studies.

Introduction

Information about the structure of germplasm collections is

of great importance for both the conservation and utiliza-

tion of genetic resources collected in genebanks. Because

of the diverse nature of genebank germplasm materials

(landraces, selected lines from landraces, elite breeding

lines, released varieties, wild and weedy relatives of the

cultigen, and genetic stocks from different areas of origin),

they provide all relevant allelic diversity necessary for

plant improvement. These materials are therefore very

suitable for example for association studies (D’hoop et al.

2010). However, the large numbers of accessions accu-

mulated in genebanks reduce the efficiency and effective-

ness with which these genetic resources can be exploited.

The approach of forming core collections (core sub-sets)

was introduced to solve the above problem. Frankel (1984)

defined a core collection as a limited set of accessions

representing, with minimum repetitiveness, the genetic

diversity of a crop species and its wild relatives. Deter-

mination of the genetic structure (partitioning) of hetero-

geneous germplasm collections is an essential component

in the sampling of core collections since partitioning of

germplasm collections before sampling ensures that both

the genetic and the ecological spectra of germplasm col-

lections are fully represented in core collections (Brown

1995; van Hintum et al. 2000). In addition, it may be

necessary to associate accessions in the core collection

with the entire collection; the association can be based on

the group structure.

The determination of genetic structures of germplasm

collections is also an important aspect of association

studies (Wang et al. 2005; Shriner et al. 2007). General

agreement exists among researchers that incorporating

population structure into statistical models used in
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association mapping is necessary to avoid false positives

(Pritchard et al. 2000b; Flint-Garcia et al. 2003; Zhu et al.

2008). The general model for association mapping can be

written as ‘‘phenotype = marker ? genotype ? error’’,

and test for a marker effect is equivalent to testing for a

QTL. Typically, genotype is a random factor whose effects

are structured by kinship or population structure. This

simple model can be improved by incorporating informa-

tion on the relationships between the genotypes a.k.a.

population structure. The relationship between phenotype

and marker can be tested within the different groups (e.g.

Remington et al. 2001; Simko et al. 2004) or genetic

groups can be used as an extra factor or as a covariate in

modeling the relationship (e.g. Thornsberry et al. 2001;

Wilson et al. 2004). Yu et al. (2006) went further by

introducing a mixed model approach which incorporates

both population structure (Q) and kinship (K) in modeling

the relationship between phenotype and marker. Another

important method for incorporating population structure in

association studies involves the use of principal compo-

nents (Price et al. 2006).

Whether the genetic structure is needed for use in

sampling core collections or for association studies, an

important challenge still is the choice of a method for

determining the genetic structure of germplasm collections.

In the past, determination of the genetic structure of

germplasm collections has mainly been done using tradi-

tional multivariate statistical methods such as cluster

analysis, principal component analysis, and multidimen-

sional scaling, usually based on agronomic data (Peeters

and Martinelli 1989; Franco et al. 1997, 2005, 2006).

In recent years, many new methods have been devel-

oped especially for studying structure in natural popula-

tions using molecular markers, e.g. STRUCTURE

(Pritchard et al. 2000a), PCA (Patterson et al. 2006) and

PCO-MC (Reeves and Richards 2009). These methods can

also be used for studying genetic structure in germplasm

collections. However, traditional hierarchical clustering is

still a very popular method for studying genetic diversity in

crop species (see D’hoop et al 2010; Barro-Kondombo

et al. 2010; Perumal et al. 2007; Folkertsma et al. 2005). Its

popularity stems from the fact that it requires little com-

puter time compared to other methods, it is available in

many general statistical packages, it is frequently used in

different types of applications and it is easy to understand.

Moreover, it does not require genetic assumptions such as

Hardy–Weinberg or linkage equilibrium. Hierarchical

clustering requires decisions about the distance measure,

the clustering algorithm, and the evaluation of dendro-

grams, amongst others. Most evaluations of the perfor-

mance of hierarchical clustering methods were based

on data sets of limited size (Milligan and Cooper 1985).

In addition, most studies carried out to evaluate the

performance of hierarchical clustering methods with

respect to germplasm collections were on non-molecular

marker data (Peeters and Martinelli 1989; Franco et al.

1997, 2005, 2006). We are not aware of any study in which

the performance of hierarchical clustering techniques was

evaluated specifically using molecular marker data. With

the expected reduction in the cost of genotyping, we will be

faced with datasets of thousands of accessions genotyped

with several molecular markers, therefore, there is strong

need to evaluate the performance of the traditional hier-

archical clustering techniques using large sets of molecular

marker data. The structure of genetic diversity in germ-

plasm collections is totally different compared to natural

populations. It is not clear how traditional clustering will

perform under different factors affecting genetic diversity

like migration and reproductive system of the materials

that constitute germplasm collections. As pointed out by

Mohammadi (2003), very few studies in plant genetic

diversity have critically analyzed the performance of dif-

ferent clustering procedures especially with respect to

molecular markers.

Several methods for evaluating the results of hierarchi-

cal clustering techniques exist. When performing hierar-

chical cluster analysis, we are interested in answering some

of the following questions: (1) is there agreement between

the original distances and the distances between individuals

as represented by the dendrogram (2) what can the dend-

ogram tell us about structure in the data set and (3) what is

the optimum number of clusters for a given data set? One

of the most popular measures of agreement between the

original distances and the distances in dendrogram is the

cophenetic correlation coefficient (CPCC) (Sokal and

Rohlf 1962); another measure is the stress criterion of

Kruskal (1964). Only a few measures for the presence of

hierarchical structure can be found in the literature. Kauf-

man and Rousseeuw (1990) proposed the agglomerative

coefficient (AC) as a criterion for measuring the amount of

hierarchical structure in the data. A large number of

methods have been proposed to deal with the optimum-

number-of-clusters problem. A classical study is that of

Milligan and Cooper (1985) who examined the perfor-

mance of 30 of such criteria. Since then many criteria for

determining the optimal number of clusters were introduced:

the silhouette statistic (Rousseeuw 1987), Krzanowski and

Lai’s index (Krzanowski and Lai 1988), the gap method

(Tibshirani et al. 2001), the Clest method (Dudoit and

Fridlyand 2002), the jump method (Sugar and James 2003)

and the weighted gap method (Yan and Ye 2007). In

general, little attention has been paid to the behavior of the

above measures and methods in relation to molecular

marker data from germplasm collections. A literature

search indicated that so far no study tried to relate the

amount of genetic structure in a germplasm collections to
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the performance of hierarchical cluster analysis techniques.

The main objective of our study is to determine a rela-

tionship between dendogram evaluation criteria such as

CPCC, AC to subgroup differentiation (genetic structure).

In addition, we also compared the performance of hierar-

chical clustering techniques with model-based clustering

methods.

In this paper, the merits of hierarchical clustering tech-

niques for application in germplasm collections will be

considered. The ‘‘Materials and methods’’ contains a brief

description and overview of clustering techniques, the

evaluation criteria and the methods used for generating

simulated data. The real data set used for illustration in this

paper is also described. In the results section, we present

results of cluster analysis of both real and simulated data

sets. We compare the results of two traditional hierarchical

clustering techniques (UPGMA and Ward) with the model-

based cluster analysis program STRUCTURE (Pritchard

et al. 2000a), and show using simulated data how different

evaluation criteria of hierarchical cluster analysis are

related to subpopulation differentiation.

Materials and methods

Motivation of the study

This study was motivated by the need to study genetic

diversity of several important food crops under the Genera-

tion Challenge Programme-GCP (http://www.generationcp.

org). The Generation Challenge Programme is a broad net-

work of partners from international agricultural research

institutes and national agricultural research programs collec-

tively working to improve crop productivity in the developing

world, especially environments prone to drought, low soil

fertility, pests and diseases. All the real data sets used in this

study were generated under GCP subprogram I—Crop

Genetic Diversity.

Data

Real data

The real data that will be used to illustrate methods consist

of 1,014 accessions of coconut (Cocos nucifera) genotyped

with 30 SSR markers. The accessions were collected from

different regions of the world: West Africa (32), North

America (52), South Asia (62), Latin America (72), Central

America and the Caribbean (109), East Africa (124), South

East Asia (183) and the Pacific Islands (380). Coconut is a

diploid, mainly out-crossing species. Most of the acces-

sions in this collection were indicated as tall; 43 dwarf

accessions were present mainly from South East Asia.

Dwarf coconuts have a high degree of self-fertilization.

Because of its usefulness, coconut has been extensively

distributed around the world. For this study, the coconut

data were selected because it contained larger numbers of

accessions of each of the diverse origins (a typical gene-

bank germplasm collection).

Two additional data sets, on potato (Solanum species)

and common bean (Phaseolus vulgaris), are described,

analyzed and discussed in the Electronic Supplementary

Material, Appendix 2. The potato data (233 accessions; 50

SSR markers) contained several unique accessions which

act like outliers. All accessions used in this study are

diploid. Unlike coconut and potato, common bean is a

predominantly selfing species. The common bean data (603

accessions; 36 SSR markers) consist of accessions of two

distinct types, Mesoamerican and Andean.

Simulated data

Marker data were simulated by SimuPOP (Peng and

Kimmel 2005), a forward-time population genetic simula-

tion environment. We used a finite island (Wright 1931)

and a stepping stone (Kimura 1953) migration models. In

each generation, random mating (with 2% selfing) was

assumed to produce a diploid genotype for 30 unlinked loci

for each individual, which had a certain probability of

migrating to another subpopulation. We simulated 1,000

individuals in five subpopulations of varying subpopulation

differentiation levels (differentiation between subpopula-

tions was determined by migration rates and number of

generations). The migration rates used in this study were 0,

1 and 2 migrants per subpopulation. At each of the 30 loci,

the average allele frequency of coconut data was used as

the starting allele frequency for the simulation. Within each

parameter set, all the loci had the same mutation dynamics,

which occurs according to a K-allele model (KAM). Under

the KAM model, there are K possible allelic states, and any

allele has a constant probability of mutating into any of

the other K - 1 allelic states (Crow and Kimura 1970).

A mutation rate of 2 9 10-5 with 50 possible allelic states

was used in the simulation. The mutation parameters were

set to mimic highly polymorphic markers such as SSR

markers. However, in this case, the role of mutation is very

limited since we used a limited number of generations in

the simulation. In addition to using alleles from real data as

starting frequencies for simulation, the numbers of gener-

ations for the simulations were restricted (from 5 to 200

generations) to mimic the situation of agricultural crops in

the genebanks. Full information about the whole set of

simulations is given in the Electronic Supplementary

Material, Appendix 3.
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Distance

In this paper, we used genetic distances (D) based on the

proportion of shared alleles (PSA) where D = 1 - PSA, and

PSA ¼
XM

m¼1

XAm

a¼1

minðf1ma; f2maÞ;

where in diploids f1ma and f2ma are the frequencies of allele

a (a = 1, 2…Am; Am B 4) for molecular marker m (m = 1,

2…M) in individuals 1 and 2, respectively, and

f1ma; f2ma ¼ 0; 1
2

or 1. For more information on the pro-

portion of shared alleles as similarity measure, see

Bowcock et al. (1994), Chakraborty and Jin (1994) and

Chang et al. (2009). The effect of distance measures on the

grouping of accessions will be considered in another paper.

Clustering techniques

Hierarchical clustering techniques

From the literature on determination of the structure of

plant germplasm collections, the most popular clustering

methods are Unweighted Pair Group Method with Arith-

metic Mean (UPGMA; (Sokal and Michener 1958)) and

Ward’s method (Ward 1963). For the purpose of this study,

only these two hierarchical clustering methods (hereafter

referred to as UPGMA and Ward) will be discussed; both

methods are well described in Kaufman and Rousseeuw

(1990) and Johnson and Wichern (2002).

The differences between hierarchical clustering algo-

rithms lie mainly in how the distances between pairs of

objects or clusters are defined. In UPGMA, the distance

between two clusters is defined as the unweighted mean of

the distances between all pairs of accessions, one from

each cluster. At each step, the two nearest clusters are

joined. Ward employs analysis of variance (ANOVA)

approach for calculating the distances between clusters. For

each pair of clusters, the sum of squared deviations

between each accession and the centre of the new cluster

(error sum of squares) is calculated and the pair of clusters

that yields the lowest error sum of squares is merged. In

other words, at each step, in the clustering process, the

effect of the union of every possible pair of clusters is

considered, and the two clusters that produce the smallest

increase in error sum of squares are joined. It should be

noted that both UPGMA and Ward use Lance and

William’s recurrence formula (Lance and Williams 1967)

to operate directly on any distance matrix.

Model-based clustering techniques

The most popular model-based clustering technique is

STRUCTURE (Pritchard et al. 2000a; Falush et al. 2003,

2007). STRUCTURE assumes a model with K populations;

K may be unknown. It is assumed that within populations

loci are in linkage equilibrium and Hardy–Weinberg

equilibrium; STRUCTURE assigns individuals to popula-

tions to achieve this.

Evaluation criteria

Cophenetic Correlation Coefficient

The Cophenetic Correlation Coefficient (CPCC) is a

product–moment correlation coefficient between cophe-

netic distances and distance matrix (input distance matrix)

obtained from the data. The cophenetic distance between

two accessions is defined as the distance at which two

accessions are first clustered together in a dendrogram

going from the bottom to the top. The CPCC, therefore,

measures the relationships between the original pair wise

distance between accessions (true distances) and pair wise

distances between accessions predicted using the dendo-

gram. Farris (1969) proved algebraically that among the

traditional hierarchical clustering algorithms, UPGMA

always produces the highest CPCC; earlier this was shown

empirically by Sokal and Rohlf (1962).

Agglomerative coefficient

The Agglomerative Coefficient (AC) described by Kaufman

and Rousseeuw (1990), is one of the methods proposed for

quantifying hierarchical structure. The agglomerative coeffi-

cient is defined as

AC ¼ 1� daverage

dfinal

;

where daverage denotes the average distance at which each

object merges with one or more objects for the first time,

dfinal is the distance at which all the objects are merged into

one cluster. It is clear from the formula that AC is highly

affected by the distance (dfinal) at the final merger of the

algorithm, i.e. as long as the value of dfinal is high relative

to daverage, AC will always be close to one. The use of AC

in plant diversity studies is quite limited but it has been

used in other fields.

Determining the optimal number of clusters

Milligan and Cooper (1985) evaluated 30 rules for deter-

mining the optimal number of clusters. For illustration, one

of the best six methods according to Milligan and Cooper

(1985), the point biserial correlation, will be compared

with the average silhouette coefficient proposed by

Rousseeuw (1987). The two criteria were chosen because
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of their easy interpretation. The Point-Biserial Correlation

(PBC) (Milligan 1981) is defined as the correlation

between corresponding entries in the original distance

matrix and a matrix consisting of zeros and ones indicating

whether two objects are in the same cluster or not. This is

an easy measure of the resemblance between the distance

matrix and the resulting tree.

The Average Silhouette Coefficient (ASC) (Rousseeuw

1987) combines the concepts of cluster cohesion and sep-

aration; it relates distances between objects within the same

cluster with distances between objects in different clusters.

The silhouette coefficient (s) of an object is calculated as:

s ¼ ðb� aÞ=maxðb; aÞ; where a is the average distance of

an object to all the objects in the same cluster and b is the

minimum average distance between an object to objects in

any of the other clusters.

The average silhouette coefficient for each cluster is cal-

culated by averaging the silhouette coefficients of all the

objects in the cluster. An overall measure of the quality of the

clustering is obtained by computing the average silhouette

coefficient over of all objects in the data. Other criteria for

determining the optimum number of clusters are discussed in

the supplementary material (Appendices 1, 2 and 3). In

applying the criteria for determining optimum numbers of

clusters, each dendrogram was cut into a specified number of

clusters K (= 2, 3,…, 10) and values of the criteria for deter-

mining the number of clusters were calculated and plotted

against K. For both PBC and ASC, the number of clusters

(K) at which the plot of K versus the value of the criterion is

maximum is considered as the optimum number of cluster for

a given data set. It should be noted that all these criteria do not

directly test for the presence of one cluster (K = 1).

Data analysis

Real data

After performing cluster analysis using UPGMA and Ward,

CPCC and AC were calculated. The results from hierar-

chical cluster analysis were also compared with the results

from STRUCTURE with regard to cluster composition and

appropriate number of clusters.

STRUCTURE was run under the assumption of an

admixture model with independent allele frequency model.

No prior information was used. Calculations were carried

with the number of subgroups K ranging from 2 to 10 with

3 independent repeats for each K and with 100,000 itera-

tions of which the first 30,000 were used as burn-in.

Simulated data

In this paper the analysis of variance (ANOVA) approach

(algorithm described by (Yang 1998)) and implemented in

Hierfstat package in R by (Goudet 2005) was used to calculate

subgroup differentiation (FST). To explore the relationships

between FST and clustering evaluation criteria, datasets from

different simulations were pooled together and then grouped

based on the strength of subgroup differentiation into groups

(each containing 100 datasets) with similar realized values of

FST. Hierarchical cluster analysis was performed using

Agglomerative Nesting (Agnes) procedure (Kaufman and

Rousseeuw 1990) of the package Cluster of R.

The ability of UPGMA and Ward to recover the sub-

populations in the simulated data was evaluated using

overall cluster purity (Zhao and Karypis 2004). Overall

purity was calculated as follows. Let pij ¼ mij

mi
be the

probability that a member of cluster i (i = 1, 2,…, I)

belongs in reality to subpopulation j (j = 1, 2,…., J), mij is

the number of members of subpopulationj allocated to

cluster i and mi is the number of members of cluster i. The

purity for each cluster (pi) is defined as the maximum

probability of correct assignment of cluster i to one of the

subpopulations, i.e. pi ¼ max
j

pij

� �
; and over all purity is

defined as
Pk

i¼1
mi

m pi.

Results

Coconut

Both dendrograms (UPGMA and Ward) resulted into two

major clusters (Fig. 1), but clear differences were evident

within these clusters. For example, any attempt to produce

more than two clusters from each dendogram result into groups

of very different structures with UPGMA resulting into highly

unbalanced clusters in terms of sizes, (many of the clusters

contained one or two accessions) compared to Ward. UPGMA

(CPCC = 0.82) preserved the original distance matrix better

than Ward (CPCC = 0.74). The two dendrograms had very

different values of AC (Ward: 0.97; UPGMA: 0.58).

When applied to the Ward dendogram, both criteria for

determining the optimum number of clusters (PBC and

ASC) identified two as the optimal number of clusters for

the coconut data (Fig. 2a, b). However, when applied to

UPGMA dendrogram, PBC was not able to identify an

optimum number of clusters, i.e. changing the number

clusters from 2 to 10 produced very similar correlations

(Fig. 2a). STRUCTURE (method by Evanno et al. 2005)

also showed two as the optimum number of clusters (see

Electronic Supplementary Material, Appendix 1).

Composition of clusters

The two major groups identified by both UPGMA and

Ward contained accessions associated with the Pacific
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Ocean versus accessions associated with the Atlantic and

Indian oceans. These two major groups were also

observed when clustering was done using STRUCTURE

(K = 2) (see Fig. 3). While further subdivision obtained

from Ward’s dendrogram led to formation of clusters/

groups which coincided with groups based on passport

data (region of origin), this was not possible with UP-

GMA. In terms of grouping of accessions, the results from

STRUCTURE are quite similar to those of Ward. In fact,

for the number of groups (K) equal two, three or four, the

groups formed by STRUCTURE were almost identical to

those produced by cutting Ward’s tree to produce the

same number of clusters (Fig. 3). For example, by spec-

ifying (K = 3), both STRUCTURE and Ward resulted

into the following three groups: (1) accessions associated

with the Atlantic and Indian oceans, (2) accessions from

Central America (Panama), and (3) other accessions

associated with the Pacific ocean. Similarity between

groups formed by STRUCTURE and Ward was also

observed for the potato data (see Electronic Supplemen-

tary Material).

Simulated data

The two migration models (Island and Stepping stone)

yielded identical results so only the results of the Island

model will be shown. The simulated data sets varied

greatly with respect to subpopulation differentiation with

realized FST ranging from 0.010 to 0.431. In general, the

values of CPCC increased with subgroup differentiation

(expressed as FST); UPGMA produced a consistently

higher CPCC than Ward (Fig. 4). The difference in CPCC

between UPGMA and Ward decreased with increasing

subgroup differentiation. AC also increased with subpop-

ulation differentiation for both UPGMA and Ward (Fig. 4).

In this case, Ward showed a higher AC than UPGMA;

Fig. 1 Dendrograms for the

coconut data, a Ward,

b UPGMA. Dendrograms

produced by Ward and UPGMA

are clearly different with respect

to branching. Ward dendrogram

had Cophenetic Correlation

Coefficient (CPCC) of 0.74 and

Agglomerative Coefficient (AC)

of 0.97 while UPGMA had

CPCC of 0.82 and AC of 0.58.

The two major clusters in the

two dendrograms had similar

compositions (Accessions

associated with Indian and

Atlantic Oceans versus those

associated with the Pacific

Ocean)

Fig. 2 a Plot of the Point-

Biserial Correlation (PBC)

versus the number of groups for

the UPGMA and Ward

dendograms for the coconut

data. b Plot of the Average

Silhouette Coefficient (ASC)

versus the number of groups for

the UPGMA and Ward

dendograms for the coconut

data. For both criteria, the

number of groups (K) for which

the criterion is maximum (or

point where the plot flattens off)

indicates the optimum number

of clusters. Both criteria show

two as the optimum number of

clusters
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Ward reached the maximum value of one with FST just

over 0.1, i.e. the curve flattens off much quickly.

Identification of the optimum number of groups

Cutting of UPGMA trees resulted into highly unbalanced

clusters (one or two clusters containing the majority of

accessions with several other clusters with 1 or 2 acces-

sions like in real data); only results for Ward is presented.

The performance of the criteria for determining optimum

number of clusters also depended on the amount of sub-

group differentiation (Fig. 5). With relatively weak popu-

lation differentiations (FST \ 0.08), all methods performed

quite poorly in identifying the correct number of groups. At

low differentiation levels, most criteria for determining

optimum number of clusters gave two as the appropriate

number of clusters. We also noticed that for a number of

data sets with weak subgroup differentiations the values of

criteria for determining optimum number of clusters either

kept rising or falling, or kept fluctuating to an extent which

did not allow determination of an optimum number of

clusters. At higher levels of population differentiation

(FST [ 0.2), the performances became similar.

From Fig. 6, it can be observed that Ward performed

well in recovering the subpopulations. Except for relatively

weak subpopulation differentiation (FST \ 0.05), by cut-

ting the trees into five groups, Ward produced clusters of

which over 90% of the members were from one subpop-

ulation. The poor performance of UPGMA methods in

recovering the original subpopulations, even with high

subgroup differentiation, is because UPGMA produced

highly unbalanced clusters.

Fig. 3 a Bar plots for

individual coconut accessions

generated by cutting the Ward

dendrogram into a specified

number of clusters/groups; the

numbers of clusters from top to

bottom were 2, 3, 4 and 5. The

clusters are represented by

different colors. Each column

represents one accession. The

labels below the bar plots

indicate the regions of origin of

the coconut accessions. b Bar

plots for individual coconut

accessions generated by

STRUCTURE 2.2 using the

admixture model with

independent allele frequency

model based on 30 SSR

markers; the numbers of clusters

from top to bottom were 2, 3, 4

and 5. The groups are

represented by different colors.

Each bar is partitioned into

segments indicating its genetic

composition, the longer the

segment the more an accession

resembles one of the groups.

The labels below the bar plots

indicate the regions of origin of

accessions
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Discussion

This paper shows that, if used with care, traditional cluster

analysis provides a simple and powerful tool for determining

the genetic structure of germplasm collections using molec-

ular marker data. Traditional cluster analysis is available in

many standard statistical packages and does not require

special purpose software like STRUCTURE. In addition,

when clustering individual accessions, the performance of

hierarchical clustering techniques depends only on subgroup

differentiation, not on the migration models used to simulate

the data, provided that discrete subgroups are present.

Based on our results, CPCC can be used as an indicator

for the strength of subgroup differentiation. A high CPCC

(CPCC� 0:8) with both UPGMA and Ward is an indica-

tion of the presence of reliable population structure in the

data. Although it has been shown theoretically and

empirically that UPGMA always produce dendograms with

a higher CPCC than other clustering algorithms (Farris

1969), our simulation results showed that, if distinct groups

exist, the difference in CPCC between UPGMA and Ward

is expected to be small and this difference gets smaller as

subgroup differentiation increases. The differences in

CPCC between Ward and UPGMA in real data also appear

Fig. 4 a Relationship between

Cophenetic Correlation

Coefficient (CPCC) and

subgroup differentiation (FST)

for the simulated data.

b Relationship between

Agglomerative Coefficient (AC)

and subgroup differentiation

(FST) for the simulated data.

Each data point is the average of

100 datasets with similar

subgroup differentiation

Fig. 5 Percentages of simulated data sets for which the Point Biserial

Correlation (PBC) and the Average Silhouette Coefficient (AC)

identified the correct number of clusters versus the subgroup

differentiation (FST) (results from Ward only). Each point is based

on 30 simulated data sets

Fig. 6 Plot showing the difference in ability of Ward and UPGMA to

recover known subgroups in the data based on cluster purity. Each

point is based on 100 datasets of similar FST values. Data sets with

zero migration rates were excluded since we were mainly interested in

low to medium subgroup differentiation
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to reflect the degree of distinction between the groups in

the data. For example, the common bean data with two

distinct groups (Mesoamerican versus Andean) had a much

smaller difference (0.07) in CPCC between Ward and

UPGMA compared to potato data (0.17) with many unique

accessions. For taxonomic applications (see, Rohlf 1992),

it is recommended that CPCC should be very high

(CPCC� 0:9) for a dendrogram to be useful. Our results

indicate that when clustering large numbers of accessions

the CPCC obtained using Ward is not likely to be greater

than 0.85 unless the subpopulations are highly differenti-

ated (FST [ 0.25). This is due to the fact that Ward tends to

form balanced clusters which may include outlying

accessions (Jobson 1992); UPGMA tends to form unbal-

anced clusters assigning outlying accessions to separate

clusters.

The usefulness of AC as a method for quantifying the

amount of hierarchical structure in the data appears to be

quite limited especially when applied to Ward. For Ward,

the distance at which all clusters finally join is often much

larger than the distance at which objects are joined in a

cluster for the first time. All the three real data sets show

very similar AC (0.97, 0.94, and 0.90 for coconut, potato

and common beans respectively) with Ward but marked

differences observed for UPGMA (0.58, 0.77, and 0.67 for

coconut, potato and common beans respectively). Several

studies in the literature have also obtained high AC values

(C0.95) with Ward and have used these results to either

justify the use of Ward clustering algorithms or to conclude

that there is substantial amount of structure in the data (Fan

et al, 2004, Cushman et al 2010, Negro et al 2010). Based

on our results which showed that Ward can result in a high

AC even for a homogenous population, these conclusions

can be misleading. We suggest that further modification

should be made before AC can be used in conjunction with

Ward. It should be noted that AC was initially proposed to

describe the strength of the hierarchical structure as

obtained by UPGMA (Kaufman and Rousseeuw 1990).

The rather low values of AC (\0:75) obtained from UP-

GMA dendrograms even for highly differentiated sub-

groups could be attributed to a chaining effect (tendency of

a clustering algorithm to pick out long string-like clusters

(see, Johnson and Wichern (2002)) caused by outliers.

UPGMA dendrograms with high CPCC but a very low AC

value (\0.6) often indicate the presence of many unique

accessions or small groups of accessions (together with two

or more large groups). The use of CPCC and AC (only with

UPGMA) together can roughly tell us the degree of fit, the

presence and strength of subgroup differentiation.

The poor performance of criteria for determining the

number of clusters may be explained by the presence of

weak, and often subgroup differentiation found in many

germplasm collections. Accessions in genebanks are no

random samples but selections based on factors such as

geographical distribution/location, accessibility or even

perceived uniqueness. The inability of criteria to determine

the optimum number of groups or clusters in a dataset

is not limited to hierarchical cluster analysis techniques.

Falush et al. (2003, 2007) stated that the method for

determining the number of populations in STRUCTURE

most often fails in real-world data sets due to various

reasons (e.g. isolation by distance or inbreeding). The

tendency for these criteria to show two as an optimal

number clusters for the real data could be attributed to the

presence of dominant groups (Evanno et al 2005; Yan and

Ye 2007). In the cases where dominant groups overshadow

minor subdivision, sequential detection of structure as

described by Yan and Ye (2007) could offer solutions.

Based on the poor performance of criteria for determining

optimum number of clusters with UPGMA, it is clear that

when the cluster sizes are highly unequal, as will often be

the case in germplasm collections, applying criteria for

determining optimum number of clusters makes little

sense. In the case of association studies, one way of getting

around the problem of identifying optimal number of

clusters could be to use the relatedness based on cophenetic

distances (predicted pair wise distances between acces-

sions) directly to correct for population structure just like

kinship or other relatedness information is used (K matrix).

Studies have shown that correcting for population structure

using the K matrix may be sufficient (see Zhao et al. 2007;

Stich et al 2008; Astle and Balding 2009). Our analysis

show a high correlation between cophenetic distances and

dissimilarity between accessions based on the first two axes

of principal coordinate analysis (see Elecronic supple-

mentary material, Appendix 2). However, further study is

required to assess the usefulness of cophenetic distance in

association mapping studies.

Our simulation results showed that Ward was very

successful in recovering the original subgroups in the data

if they were present and distinctly separated. In addition,

because the nature of groups formed by Ward, the

dendrograms can be evaluated using standard criteria such

as those for determining the number of clusters. However,

in the presence of many unique or intermediate accessions

the groups formed by Ward will not be homogeneous. In

this case, the differences in CPCC between UPGMA and

Ward can be quite helpful in deciding which method to

select. In situations in which both UPGMA and Ward have

high CPCC (C0.8), Ward will have many advantages over

UPGMA. However, in a situation in which only UPGMA

has CPCC C 0.8 and there is a big difference ([0.1) in the

values of CPCC between UPGMA and Ward, it will be

preferable to use the groups formed by UPGMA.

In conclusion, traditional cluster analysis (UPGMA and

Ward) provides an easy and effective way for determining
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structure in germplasm collections. In addition to being

simple to apply (using standard statistical software) and

simple to interpret, it is possible to determine the presence

and strength of subgroup differentiation as well as the

presence and influence of unique accessions in the collec-

tion. It provides a good alternative for STRUCTURE or

PCA in association analyses. It can be combined easily

with mixed model facilities that are available in standard

statistical packages. Although our simulations were based

on random mating, similarity of results between the real

data from both out-crossing (coconut and potato) and sel-

fing species (common bean) clearly indicate that traditional

cluster analysis can be applied in both mating systems.
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