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Abstract

Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum
using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative
physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those
of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity
analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally
consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and
bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between
0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and
genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. STRUCTURE

groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient
way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These
results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in
collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic
groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes
for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of
FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod.

Citation: Bouchet S, Pot D, Deu M, Rami J-F, Billot C, et al. (2012) Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from
Physically Anchored DArT Markers. PLoS ONE 7(3): e33470. doi:10.1371/journal.pone.0033470

Editor: Lewis Lukens, University of Guelph, Canada

Received November 2, 2011; Accepted February 9, 2012; Published March 13, 2012

Copyright: � 2012 Bouchet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement) and Generation
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Introduction

Identifying the genetic factors controlling variability in traits of

agronomic and adaptive importance constitutes the basis for

sustainable management of genetic resources. Such management

is of central importance, not only in a short-term breeding

perspective, but also to guarantee conservation of the genetic

diversity currently available. Association mapping, also known as

linkage disequilibrium mapping, is an efficient strategy for

dissecting the genetic control of phenotypic variability down to

the gene scale (for reviews see [1,2]). It exploits large allelic

diversity and historical recombination events, providing increased

mapping resolution of regions expected to be associated with the

traits of interest in a wide range of genetic backgrounds. As a

prerequisite, geneticists need to clearly understand the history of

successive bottlenecks, migrations, adaptations and human

selection events that shaped their association panels. Admixed

materials that diverged since domestication and are pooled

together in the same statistical analysis can lead to spurious

associations when the trait is differentiated between genetic

subgroups. Once the genetic structure has been clearly under-

stood, the ability to identify genes underlying the genetic

variability of the target trait depends on the degree of Linkage

Disequilibrium (LD) in the studied population and on the marker

density available. In this context, accurate estimates of the LD

breakdown window need to be acquired.

Alongside the exploitation of LD as a genome mapping

approach, the detection of outlier loci concerning genetic

differentiation provides a complementary strategy for identifying

genome regions and candidate genes related to adaptive traits.
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The challenge consists in distinguishing loci harbouring patterns of

differentiation that are significantly different from the one

expected under realistic neutral demographic scenarios.

Sorghum is one of the world’s most important cereals for

human and animal nutrition. It currently ranks fifth for grain

production tonnage. In developing countries, it is a major staple

food and fodder crop constituting one of the pillars of food

security. In developed regions, it has been primarily grown for

animal feed. In addition, its merits as a bioenergy crop have

recently been highlighted [3,4]. Its success is mainly due to its high

level of drought tolerance and its adaptation to a large array of

environmental conditions and uses. The recent release of its

genome sequence [5], its phylogenetic proximity with several

important C4 species (maize, switchgrass, sugarcane) and its low

genome complexity, contribute to its interest on a more

fundamental level. In this context, it is important to develop a

clear framework to identify the genes of economic and adaptive

interest in sorghum, through association mapping or selection

scanning.

Characterization of worldwide sorghum molecular diversity has

mainly been based on the analysis of two large and representative

panels. Deu et al. [6] and Caniato et al. [7] analysed a worldwide

core collection of 210 accessions established to take race

classification, latitude of origin, response to day length and crop

management into account. Casa et al. [8] and Brown et al. [9]

analysed a panel of 216–228 converted lines corresponding to

exotic lines that have been introgressed with photoperiod-

insensitivity and dwarfing alleles [10]. These analyses were done

with relatively limited numbers of multi-allelic markers (60 RFLP

probes in [6], 38 SSR in [7], 47 SSR in [8]), recently

complemented with larger numbers of bi-allelic (SNP) markers

in the study by Brown et al. [9] (303 SNP and 38 SSR). These

different studies converged in identifying genetic groups that

correspond to racial and geographical origins. However, slight

differences were obtained on a fine scale, and the stability of the

genetic structure estimations provided by different marker types

and numbers has not been thoroughly assessed.

The level and extent of LD has yet to be accurately determined

in sorghum. So far, in addition to the pioneer study by Hamblin et

al. [11], which explored LD evolution within short sequences of

400 bp (95 regions sequenced), the most relevant analysis has been

based on a reduced set of single nucleotide polymorphisms (249

SNP) on six small genomic regions ranging from 38 to 102 kb

among 32 cultivated and wild accessions [12]. This study revealed

that LD could expand to medium range (up to 100 kb), but

generally markedly decayed within a distance of 15 kb.

The search for genomic regions and genes affected by natural

and artificial selection has been launched in a series of studies

[11,13–15] based on more than 300 genomic regions correspond-

ing either to anonymous genetically mapped loci (95 in [11], 204

in [13]), or to genes of the starch and kafirin metabolism pathways

[14,15] in small panels of accessions including fewer than 40

cultivated accessions. Despite the recent domestication and

selection history of sorghum, these studies did not identify any

clear evidence of selection in the studied loci, possibly due to the

lacks of statistical power (low number of polymorphisms per

fragment and small panel of accessions analysed) and of an

appropriate neutral model. Casa et al. [16] analysed the diversity of

98 microsatellite markers in a larger panel including 73 landraces

and 31 wild and weedy accessions and, using different statistical

methods, they concluded that 15% of the markers analysed

harboured evidence of selection. Finally, de Alencar Figueiredo

et al. [17] analysed the diversity of 6 genes potentially involved in

grain quality within a subsample of 53 cultivated accessions of the

worldwide collection already described by Deu et al. [6] and

highlighted the detection of a signature of molecular selection at 3

loci using Tajima’s D test. To date, whole-genome scans have yet

to be reported in sorghum.

The recent development of sorghum DArT markers [18–20]

provides a new opportunity to refine current perceptions and

develop approaches towards whole-genome scale analyses. The

goals of this study were to i) physically map DArT markers on the

sorghum reference sequence, ii) compare the properties of DArT

markers with SSRs and RFLPs in relation to the description of the

diversity of a worldwide sorghum collection, iii) provide estimates

of the extent of LD on a whole-genome scale on the same

collection, iv) assess the sensitivity of LD patterns to sample

composition, and v) assess the potential of the current DArT

coverage to detect genomic regions potentially subjected to

selection events.

Methods

Plant material
We used the panel developed by Deu et al [6] which is

representative of the diversity of sorghum landraces (Table S1).

The establishment of this core sample (CS) was based on race

classification, latitude of the country of origin, response to day

length and production systems. This panel includes representatives

of the five basic races of cultivated sorghum (B: bicolor, C:

caudatum, D: durra, G: guinea and K: kafir) and intermediates

between them.

RFLP and SSR genotyping
The RFLP data presented in this study correspond to a subset

(60 probes, 172 RFLP bands) of those produced by Deu et al. [6]

described in de Alencar Figueiredo et al. [21]. In addition, the CS

was genotyped with forty SSRs evenly spread throughout the

genome developed under the Generation Challenge Programme

(Billot et al. submitted). Compared to the list available at [http://

sat.cirad.fr/sat/sorghum_SSR_kit/], 8 SSR (gpsb069, gpsb089,

gpsb148, gpsb151, Xcup62, Xtxp012, Xtxp295 and Xtxp339)

were not used. Protocols are available at the same address.

DArT genotyping
We used a PstI-BanII DArT genotyping array built from 92

accessions including worldwide breeding lines, landraces, and

wild/weedy sorghums [19,20]. We extended it in this study with

71 additional accessions (Table S1).

In addition, a second genotyping array was developed from a

Mite/Bsp1286I complexity reduction based on a mixture of 87

accessions (see Table S1).

One hundred and ninety genotypes from the CS were analysed

in two sets of 95 accessions, both representative of the 10 clusters

described by Deu et al (2006) [6]. For each accession, genotyping

with the PstI/BanII array was performed as described in Mace et al

[20]. Genotyping with the Mite/Bsp1286I array was performed as

follows. Genomic DNA was digested with Bsp1286I. Bsp1286I

adapters were ligated to the digested DNA with T4 DNA ligase

(NEB). A 1-ml aliquot of the ligation product was used as the

template in two amplification reactions with one DArT-Bsp1286I

primer (59-GAG TAG TGC CAG AAC GGT C-39) and two

MITE (transposable elements) [22] DArT-TIR specific primers

(59-TTT TTG GAA CTA AAC AAG GCC-39 and 59-G GGT

GAA CTA AAC AAG GCC-39). In a first PCR, for one unit of

Bsp1286I primer, we used 10 units of TIR primers to maximize

the number of different TIR fragments produced. In a second

DArT Markers in Sorghum: Structure, LD, Selection
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PCR, for 10 units of Bsp1286I primer, we used 10 units of TIR

primers to amplify TIR-Bsp1286I fragments.

The hybridization mixtures were denatured and hybridized to

the two different DArT microarrays described above, which

contained 6244 clones each. Two controls were used for the PstI-

BanII chip, 8 for the Bsp1286I chip. DArT markers were scored

according to standard DArTsoft protocols.

Anchoring DArT markers to the sorghum genome
sequence

A total of 2413 polymorphic DArT markers identified in

different diversity and mapping analyses were sequenced and

assembled with TGI Clustering tools (TGICL) [23] in order to

eliminate redundancy due to random production of clones.

GenBank accession numbers (FI847678 through FI849555)

corresponding to the different clones are referenced in Table S2.

Non-redundant DArT marker sequences were aligned on

sorghum genome pseudomolecules (ftp://ftp.jgi-psf.org/pub/

JGI_data/Sorghum_bicolor/v1.0/Sbi/). Sequences displaying less

than 80% similarity with the sorghum genome or corresponding to

highly repeated regions were eliminated. Information regarding

clone redundancy, contig sequences, Blast quality results, position

of the markers on the sorghum genome (physical and genetic

maps) are available in Table S2.

Diversity and Structure analyses
According to the low residual heterozygosity observed for SSR

(2.7%), which is consistent with the several generations of selfing

applied to the analysed accessions, all the analyses were performed

considering the accessions as homozygotes. For heterozygous

accessions at RFLP and SSR markers, one of the two alleles was

randomly sampled.

The genetic structure of the analysed collection was estimated

using the model-based Bayesian clustering method implemented in

STRUCTURE software version 2.1 [24]. Allele frequencies in

each of the K clusters (from 2 to 15) were estimated, and for each

accession, the percentage of its genome derived from each cluster

was estimated. We assumed a single domestication event and

restricted our analysis to the correlated frequency model [25]. We

set other parameters at their default values using the admixture

model and infer alpha option. We used a 3.104 burn-in period and

105 iterations for DArTs, and a 106 burn-in period and 106

iterations for RFLPs and SSRs, as these parameters resulted in

relative stability of the results with 10 runs per K value. The

genome composition (genome plot) of each accession was

represented for each K value and each marker system. Only

accessions displaying a membership larger than 0.6 were assigned

to a genetic group, resulting in the assignment of 80% of the

accessions. In order to compare the stability of accession

assignments to the different genetic groups, either between runs

of the same marker system or between marker systems for a given

structure level (K), the dissimilarity index of ancestry per

individual was computed according to the formula [26]:

Di~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

k~1

(qik{q0ik)2

K

vuuuut

where qik and q9ik correspond to the assignment proportion of

accession i to group k according to two different runs or marker

systems.

This index was then used to calculate an average dissimilarity

index:

D~
1

n

Xn

i~1
Di

where n is the number of accessions. These calculations were

performed considering two datasets built from the quantitative

matrixes of assignments obtained from STRUCTURE (cf ‘‘no

threshold’’ in Figure 1D, Table S1) and from qualitative

information derived from the 0.6 membership threshold (cf

‘‘thresh = 0.6’’ in Figure 1D). In this case, an accession i assigned

to group K with a membership superior to 0.6 was assigned a qik

value of 1 for that group and 0 for the others. Accessions for which

memberships were lower than 0.6 were not assigned to any genetic

group.

As different marker types have different mutation rates, they are

likely to reveal different patterns of genetic structure which are all

of interest for understanding crop evolution. For the needs of LD

extent estimation and scan for signatures of selection, we tried to

determine a structure that departed as little as possible from the

various patterns revealed by the different marker systems. In that

purpose, we took into account the rate of assignment agreement

between marker systems, the likelihood of the data for each marker

system and the stability of assignments within each marker system

for a given level of structure. We also used a representation

obtained with a distance-based method in order to compare the

obtained structure with a previously established classification

scheme.

Diversity indices were calculated for each marker system within

the whole CS and within the genetic groups identified. Allelic

richness and private allelic richness were calculated with the

rarefaction method available in HP-RARE 1.0 in order to obtain

estimations based on equivalent sample size [27]. Expected

heterozygosities and their standard deviations (estimated through

1000 bootstraps) were calculated with PowerMarker [28].

To compare group differentiation as estimated with the

different marker systems, F statistics were calculated considering

accessions assigned to the different groups with a threshold .0.6.

Estimators of Fst [29] were computed with GENETIX software

[30] at the global and pairwise group levels and tested for their

significance with 1000 permutations. The ability of the different

marker systems to describe the structure of the accessions

analysed was evaluated with the Data Resolution statistic [31].

Increasing numbers of markers were randomly sampled without

replacement, by steps of 50 markers for DArTs and by steps of

two markers for RFLPs and SSRs. For each number of markers,

sampling was repeated 1000 times. For each sampling operation,

two independent sets of half the number of markers were used to

calculate two dissimilarity matrices with suitable indices

according to the marker system considered (DArT: Sokal and

Michener dissimilarity index, SSR: Simple matching index,

RFLP: Dice index). Correlations were calculated for the two

dissimilarity matrices obtained from the whole CS, considering

intra or inter-group pairwise dissimilarities at the 0.6 member-

ship thresholds.

Linkage disequilibrium analysis
LD was estimated between genome anchored DArT markers

with less than 20% missing data over the 177 accessions

considered. As rare alleles induce large variances, only markers

with a minor allele frequency of at least 0.05 were included in the

analysis. The analyses were performed using r2 and D9 [32]. Since

similar results were observed, only those obtained with r2 were

DArT Markers in Sorghum: Structure, LD, Selection
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presented. In addition, the advantages of r2 compared to other

statistical parameters used to estimate the extent of LD (and more

specifically D9) lie in its low sensitivity to a small sample size (low

allele frequency) and easy interpretation in the context of

association mapping. Indeed the r2 value is directly linked to the

proportion of variance of the QTL (whose position is usually

unknown) that will be captured by the genotyped marker [1].

Each pair of loci was categorized as unlinked (marker loci

located on different chromosomes) or linked (marker loci located

on the same chromosome) in six different distance intervals. Mean

Figure 1. Analysis of sorghum CS using DArTs, RFLPs and SSRs. (A) Average log-likelihood and standard errors obtained with STRUCTURE
software. For the three marker systems, the log-likelihood reached a plateau around K = 6. (B) The DK parameter [69] enabled the identification of
high values at K = 2 (DArTs, RFLPs) and K = 4 (DArTs, SSRs), and lower peaks at K = 7 (DArTs, SSRs) and K = 6 (RFLPs, although this peak was not visible
with the Y axis-scale used). (C) Proportion of unassigned accessions at the 0.6 membership threshold for each marker system. This proportion varied
with the marker systems and the number of groups, K. To assess the stability of accession assignments to the different genetic groups between runs
for the different marker systems, the average dissimilarity indices between runs for all accessions were computed and are reported in (D) according to
calculations presented in the Material and Methods section. This analysis revealed that SSR markers provided the least stable assignment across runs
for the same K level. Lastly, assignment stability across marker systems is reported in (E) through the calculation of the average dissimilarity index for
all accessions for each pair of marker systems (see text for details). This analysis indicated that the assignments obtained with the SSRs were the most
divergent from the other marker systems (DArTs and RFLPs).
doi:10.1371/journal.pone.0033470.g001
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r2 values were calculated for all categories of locus pairs. In

addition, the percentage of pairwise LD values beyond a threshold

above which LD could not be attributed to structure only

(P95 = 95 percentile of pairwise LD on different chromosomes)

was defined [33]. This P95 threshold was considered as an

indication of global background structure for each sample. We

evaluated to what extent the LD statistics obtained on the whole

CS were affected when subsets of accessions were considered.

Firstly, random samples of 25, 50, 75, 100, 125 and 150 genotypes

were extracted to calculate LD. For each sample size, 10 random

samples were analysed in order to estimate standard errors of the

estimations. Secondly, samples of the same sizes were chosen using

a procedure that aims at minimizing genetic redundancy between

accessions and limiting the loss of diversity. Starting from a

Neighbour-Joining tree based on Sokal and Michener dissimilarity

indices calculated with the DArT markers, the redundant

genotypes were sequentially eliminated: i.e. at each step the pair

of closest genotypes was selected and the one with the smallest

external edge was removed. The procedure was iterated until the

requested sample size. This procedure, called Maximum Length

Subtree and referred to as MLST in this paper, is implemented in

DARwin software [34,35]. The effect of minimum allele frequency

(MAF) on the extent of LD was analysed with three different

minimum allelic frequency thresholds (0.05, 0.1 and 0.2). The

mean r2 and percentage of significant LD values increased

significantly with MAF, especially for short distances (data not

shown); this result was consistent with the findings of Yan et al. [36]

in maize. Finally, LD decay within the five genetic groups

harbouring sufficient numbers of accessions was also evaluated

using DArT markers with a MAF larger than 0.05.

According to the LD patterns obtained in the whole CS and in

the genetic groups, the numbers of markers required for genome-

wide association mapping were estimated for two r2 thresholds

(r2 = 0.1 and 0.3) with a non-linear regression modelling [37].

Threshold 0.1 is the minimum r2 value to detect associations for

rather large quantitative trait loci (QTLs explaining 10% of the

phenotypic variation) with a reasonable population size (300) [38]

whereas threshold 0.3 was considered as the minimum value to

enable detection of a QTL explaining around 5 to 10% of the

phenotypic variation. The physical distances corresponding to

these thresholds were obtained from the non-linear regression of

LD decay with distance. The numbers of bi-allelic markers

required for association studies considering these thresholds were

calculated by dividing the size of the sorghum genome (736 Mb)

by the LD decay distance for the entire CS and each genetic

group.

Detection of DArT Fst outliers
Markers that present higher than expected Fst values under

neutral assumptions are candidates for divergent selection where

different populations have fixed different alleles, and markers that

present lower than expected Fst values under neutral assumptions

are candidates for balancing selection where diversity (heterozy-

gosity) tend to be conserved in populations. The distribution of Fst

under neutral assumptions was calculated by two methods. Firstly,

we used the infinite island model [39] implemented in LOSITAN

[40]. We generated 50,000 loci for which heterozygosity and Fst

were estimated through coalescent simulations considering K

populations of 50 individuals (K being the number of populations

identified using STRUCTURE software and previous knowledge

regarding sorghum evolution). This simulated distribution was

compared to the observed Fst values and expected heterozygosity.

Markers that presented Fst higher than the 99 percentile of neutral

distribution were considered candidates for divergent selection and

markers that presented Fst lower than the 99% confidence interval

were considered candidates for balancing selection. Among others,

the main drawback of this approach is that all markers including

those that will be candidates for adaptation are used to construct

confidence interval for neutral marker Fst distribution. Bayesian

methodologies [41] were proposed to adress this limitation. The

correlation of allele frequencies among demes was simulated by a

multinomial-Dirichlet likelihood [42]. Two alternate models, one

including selection and one excluding selection, use a reversible-

jump MCMC approach to estimate the posterior probability of a

given locus being under selection. We implemented 20 pilot runs

of 5000 iterations, an additional burn-in of 50,000 iterations

followed by 100,000 iterations with a sample size of 5000 and

thinning interval of 20. Only DArT markers with log10 (Bayes

Factor) equal or greater than 1 were considered, as such a

threshold corresponds to a posterior probability indicative of

strong evidence for selection according to Jeffreys’ scale [43].

Genes located in the vicinity of the DArT markers were identified

and their similarities with already characterized proteins were

evaluated through a BlastP against the Swissprot database.

Results

Physical mapping and diversity of DArT markers
Sequencing of polymorphic DArT clones, mapping on the

BTx623 genome sequence [5] and redundancy analysis led to the

identification of 1410 unique loci with an average of 141 markers

per chromosome (from 86 on chromosome 7 to 208 on

chromosome 1) corresponding to a mean interval between markers

of 670 kb on chromosome arms and 2.3 Mb in centromeric

regions. The average distance between a DArT marker and the

closest gene was 7.62 kb and 319 DArT markers were located

within genes. Mapping of the DArT markers on the CIRAD map

(mentioned in [19], Figure S1) showed almost complete colinearity

between the physical and genetic maps and enabled an estimation

of the recombination rates. According to this genetic map, 1 cM

(Haldane mapping function) corresponds to 0.24 Mbp in euchro-

matin regions and 3 Mbp around centromeres; these recombina-

tion rates were in accordance with the results of Hamblin et al. [12]

(0.254 Mbp/cM, 2–8 Mbp/cM) and Mace et al. [44] (0.22 Mbp/

cM, 8.46 Mbp/cM).

For structure analysis, 713 informative markers (386 PstI-BanII

and 327 MITE) having less than 10% missing data were

considered, whereas 1122 markers having less than 20% missing

data were used for LD analysis (Table S2). These markers were

evenly distributed on the genome (Figure S1).

Comparison of marker systems to describe genetic
structure

For a comparison between markers (DArT, RFLP and SSR),

171 accessions presenting less than 10% missing data in each of

the datasets were considered (Table S1). Basic statistics regarding

the different markers analysed in this sample are presented in

Table 1. The allelic frequency distributions differed markedly

between the marker systems (data not shown). The percentage of

markers harbouring a MAF below 0.1 was 6% for DArTs, 29% for

RFLPs and 77% for SSRs.

The number of genetic clusters present in the CS was analysed

for each marker system by STRUCTURE Bayesian method. On

average, tenfold more iterations were necessary to obtain a stable

likelihood for SSR and RFLP datasets (106) compared to DArT

(105). For all the marker systems, the logarithm of likelihood

reached a plateau around K = 6 (Figure 1A). High DK values were

observed at K = 2 (DArT, RFLP) and K = 4 (DArT, SSR), and

DArT Markers in Sorghum: Structure, LD, Selection

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e33470



lower peaks were observed at K = 7 (DArT, SSR) and K = 6

(RFLP) (Figure 1B). The rate of unassigned accessions at the 0.6

membership threshold varied with the marker systems and the

number of groups (Figure 1C). For a number of groups, K,

comprised between 2 and 8, SSR yielded the lowest rate of non-

assignment (,10%) whereas DArT and RFLP ranged between 8

and 20%. Assignments were very stable between runs for DArT

and RFLP data. For these marker systems and most K values, the

average dissimilarity index between runs was low when consider-

ing quantitative assignment to groups and null when only assigned

accessions at the 0.6 membership threshold were considered. The

discrepancies between runs were higher for SSR, with an average

dissimilarity index reaching 17% across all K values for the

assigned accessions (thresh = 0.6 in Figure 1D). There were

globally fewer discrepancies between DArT and RFLP than

between either one and SSR (Figure 1E). An analysis of Fst

evolution for the different marker systems indicated that global Fst

stopped increasing after K = 7 for DArT, K = 8 for RFLP and

continued to increase after K = 10 for SSR (data not shown). The

genome plots built from the highest likelihood run of STRUC-

TURE outputs for each K value (Figure 2A) illustrated the groups

obtained from K = 2 to K = 10 for the different marker systems.

Large discrepancies between marker systems were observed for

low numbers of putative genetic groups (K,4). The most striking

difference was observed at K = 2, for which SSR markers failed to

detect the separation of northern and southern equatorial African

accessions that was detected with DArTs and RFLPs. Such

difference could potentially be due to the highest mutation rate of

SSR markers compared to DArT and RFLP, which could have

erased the signature of ancient divergence. For higher numbers of

putative genetic groups, although the congruence between the

marker systems was better, slight differences remained. At K = 10,

a good congruence of the DArT and RFLP systems were observed,

the only differences concerning the split of the guinea group from

West Africa in two sub-groups (red and black) with the DArTs and

the alternative split of the guinea group from South Africa in two

sub-groups (orange and yellow) with the RFLPs. At K = 15, these 4

groups were characterized for each marker system (data not

shown), as well as a group from the African Great Lake already

mentioned by Deu et al. (2006) [6]. The differences were much

stronger with the SSR markers. The best congruence of

assignments between marker systems was obtained at K = 6.

Within this consensus scheme, 80% of the accessions were

assigned to a genetic group (137 among 171 accessions).

Unassigned accessions included 75% (24) of accessions phenotyp-

ically identified as pure whereas 25% (8) corresponded to

intermediate types. However, the low proportion of intermediate

types in the collection analyzed (28 accessions) did not allow us to

draw clear conclusions regarding the predictive power of the

different marker systems for assignment and de-novo detection of

admixed accessions. Within the consensus scheme, group A (pink)

was composed predominantly of durra and bicolor types from

India (22%) and eastern Africa (17%), and caudatum and

caudatum-bicolor types from China (23%). Group B (blue)

comprised caudatum and durra types, as well as intermediate

types from Africa. Group C (red) mainly comprised guinea types

from western Africa. Group D (spring green) exclusively comprised

guinea margaritiferum types from western Africa. Group E

(orange) comprised mainly guinea types from southern Africa

and Asia. Group F (green) predominantly comprised kafir and

kafir-caudatum types from southern Africa (80%). Projection of

these groups on the Neighbour-Joining tree based on the DArT

markers revealed a good correspondence between the Bayesian

approach implemented in STRUCTURE and distance based
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methods (Figure 2B). It is also interesting to note that the

consensus scheme observed at K = 6 and the Neighbour-Joining

tree obtained with DArT markers were highly congruent with the

structure identified by Neighbour-Joining in Deu et al. [6] with

RFLP markers (Table 1). The global differentiation between the 6

groups, as measured by Fst, appeared comparable between DArTs

(0.42, p,0.001) and RFLPs (0.48, p,0.001) and lower with SSRs

(0.29, p,0.001). Pairwise Fst between groups were accordingly

lower with SSR (Table 2), even though they were closely

correlated with those obtained with DArTs (r = 0.95) and RFLPs

(r = 0.93), thereby confirming the higher diversity level within each

group as described with SSR (Table 1). Groups A and B exhibited

greater gene diversity, allelic richness and private SRR allelic

richness compared to groups E and F.

Data resolution
Data resolution analysis for the three marker systems indicated

that the information could be considered saturated only for DArT

markers for which correlations between dissimilarity matrices

reached a plateau (r = 0.8) at around 300 markers. For RFLP and

SSR, correlations between dissimilarity matrices only reached 0.49

and 0.48 respectively, suggesting that an increase in marker

number would be necessary to obtain a stable representation of

genetic diversity (Figure 3). According to the identification of a

consensus scheme involving 6 genetic groups, data resolution of

the different marker types were evaluated at the intra- and

intergroup levels at the 0.6 membership threshold. Whatever the

marker systems, the correlations were higher at the intragroup

than at the intergroup level (DArTs: 0.90 vs 0.75, RFLPs: 0.53 vs

0.48 and SSRs: 0.54 vs 0.28). Although these differences were

limited for DArTs and RFLPs, the data resolution for SSRs at the

intra- and intergroup levels were highly different, suggesting that

intergroup dissimilarities remained very unstable with the set of

SSRs used in this study.

Linkage disequilibrium
Global LD decay. A total of 1122 physically anchored DArT

markers genotyped on 177 accessions were considered for LD

analysis. LD statistics for six classes of interval distances are

summarized in Table 3 and Figure 4. For the CS, mean r2

decreased from 0.18 (for the 0–10 kb interval) to 0.03 (for the

100 kb–1 Mb interval), stabilizing at 0.03 after 1 Mb. The

proportion of significant r2 values (i.e. independent of

background LD) decreased from 33% to 8% in the same

intervals, stabilizing at 5% after 1 Mb.

LD and sample size: comparative analysis of two

sampling strategies. Random sampling of different sample

sizes (n = 25, 50, 75, 100, 125, and 150) with 10 repetitions was

carried out to calculate LD statistics (Figure 4A). As observed in

Figure 4A, mean r2 was higher for small samples (n = 25 to 75) for

all distance classes and then stabilized for larger sample sizes

(n$100). The P95 threshold decreased from n = 25 (0.28) to

n = 100 (0.12) and then stabilized (0.11) leading to an increase in

the proportion of significant r2 values (from 24% for n = 25 to 33%

Figure 2. Sequential identification of the genetic groups through model-based analysis as revealed by the different marker
systems and comparison of the most relevant model-based structure (K = 6) with distance-based method analysis. (A) Genome
composition of accessions for different levels of structure. Each sample is represented in K dimensions, with K being the number of hypothetical
genetic groups that compose the collection (K ranging from 2 to 10). Three different datasets were tested: 713 DArTs, 60 RFLPs, and 40 SSRs. Each
accession on the X-axis is represented by K colours (each corresponding to a genetic group) ordered according to a decreasing genome fraction on
the Y-axis. For each dataset, 171 accessions were ordered according to DArT assignments, with a decreasing proportion of genome assigned to the
main groups according to STRUCTURE at K = 10. (B) Neighbour-Joining tree of the CS with colour projection of the six groups obtained with the
model-based method at the 0.6 membership threshold at K = 6. The Neighbour-Joining tree is based on the genetic similarities between accessions
calculated as the proportion of shared alleles of the DArT markers (Sokal and Michener modality index). The colours correspond to the genetic groups
obtained at K = 6 in (A). Accessions assigned at a proportion ,0.6 are coloured in grey. Group A in pink includes D and B from India, C and CB from
China. Group B in blue includes C and D from Africa. Group C in red includes G from Western Africa. Group D in spring green includes Gm from
Western Africa. Group E in orange includes G from Southern Africa and Asia. Group F in green includes K and KC from Southern Africa. Clusters were
identified by Deu et al. (2006).
doi:10.1371/journal.pone.0033470.g002
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for n = 100). This suggests that when n,100, LD for unlinked

markers was overestimated (strong background LD effect) and LD

between linked markers was underestimated.

MLST-based samples of size 25, 50, 75, 100, 125 and 150

yielded lower P95 thresholds for significant LD (from 0.24 to 0.09

when sample size increased) compared to those obtained by

random sampling (from 0.28 to 0.11) (Figure 4B). A comparison of

LD correlations between the CS and sub-samples obtained with

the two sampling strategies (Figure S2) indicated that correlations

increased much faster with samples of increasing sizes obtained

through the random strategy than with the MLST algorithm.

These observations come from the fact that the random sampling

strategy maintained the redundancy available in the whole CS,

with the groups most represented in the CS contributing more

than those that were under-represented, leading to biased LD

estimates. The comparison of the two strategies provided in

Figure 4C indicates that mean r2 was overestimated for all distance

classes in small samples (n = 25) for both strategies. However, the

proportion of significant r2 values was always higher with the

MLST strategy than with the random strategy (Figure 4C),

especially for short distances and small sample sizes; this

observation denoted the efficiency of this algorithm in estimating

local LD by reducing background LD. Despite the correction

provided by the MLST algorithm, the percentage of significant

LD values remained underestimated for n = 25–50 compared to

higher sample sizes (Figure 4B). Unlike random sampling, for

which almost continuous increases in mean r2 and in the

proportion of significant r2 were observed until n = 150–177, the

MLST strategy featured a maximum LD resolution for n = 100

with a slight decrease above that, with higher sample sizes

probably leading to a redundancy between the accessions.

Consequently, a set of 100 accessions sampled with the MLST

strategy provided the most accurate LD estimates for the CS.

Considering this ‘‘Optimized 100 MLST set’’ (100 accessions

sampled with MLST), it appeared that mean r2 decreased with

distance from 0.2 to 0.02 and stabilized after 100 kb. The

proportion of significant values decreased concomitantly from 38

to 21% between the same intervals, but continued to slowly

decrease for larger inter-marker distances (Figure 4B). Estimations

of the number of markers required for association mapping in the

CS are provided in Table 4.

LD in subgroups of different origins. In addition to the

analysis of LD evolution in the whole CS, LD decay variability was

estimated in the different genetic groups (excluding group D

because of its small size with 11 accessions). Mean r2 values (Figure

Table 2. Pairwise differentiation (Fst) between the six genetic
groups as obtained with three different marker systems (DArT,
RFLP, SSR).

Group1 Group2 DArT_Fst RFLP_Fst SSR_Fst

Whole Core Sample 0.42 0.48 0.29

A B 0.26 0.28 0.18

A C 0.35 0.41 0.25

A D 0.51 0.54 0.36

A E 0.36 0.36 0.22

A F 0.43 0.47 0.26

B C 0.31 0.42 0.29

B D 0.55 0.59 0.39

B E 0.32 0.46 0.21

B F 0.45 0.53 0.29

C D 0.59 0.67 0.45

C E 0.41 0.49 0.33

C F 0.53 0.64 0.38

D E 0.62 0.67 0.43

D F 0.70 0.71 0.52

E F 0.36 0.40 0.28

Genetic differentiations were calculated among the genetic groups considering
only those accessions assigned with a membership . = 0.6. For DArT, RFLP and
SSR markers, Fst values (Weir and Cockerham, 1984) were computed with
GENETIX.
doi:10.1371/journal.pone.0033470.t002

Figure 3. Ability of the marker systems to describe the genetic
structure of the sorghum Core Sample. Total, intra- and intergroup
accession dissimilarity correlations obtained with an increasing number
of the three different marker systems (DArT, RFLP, SSR) were computed
according to the data resolution statistic developed by Van Hintum [31].
An enlargement of the graph for marker numbers comprised between 0
and 150 is provided at the bottom right-hand side of the figure. For the
whole CS, the description of diversity can only be considered saturated
for DArT markers. An analysis of the dissimilarity correlations at the
intra- and intergroup levels indicated that SSR markers were the least
efficient in describing the intergroup structure.
doi:10.1371/journal.pone.0033470.g003

Table 3. Evolution of linkage disequilibrium with physical
distance in the Core Sample.

Distance Npairsa Mean (r2) SD (r2)
Proportion of significant
r2b

0–10 kb 60 0.18 0.29 0.33

10–50 kb 151 0.13 0.25 0.23

50–100 kb 176 0.07 0.11 0.19

100 kb–1 Mb 2989 0.03 0.07 0.08

1 Mb–10 Mb 21426 0.03 0.05 0.05

10 Mb–100 Mb 41839 0.03 0.05 0.05

anumber of pairs of markers.
bproportion of r2 values greater than the P95 threshold (this threshold
corresponded to r2.0.11 for the whole Core Sample).
doi:10.1371/journal.pone.0033470.t003
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S3) were quite different across genetic groups. The thresholds of

significant LD values were comparable (0.3), but higher than in the

whole CS (0.11) and the ‘‘optimized 100 MLST’’ set (0.09).

Percentages of significant values were also variable between

groups, with the most diverse groups, A and B, showing lower LD

(r2 = 0.1 at 100 kb and fewer than 10% of marker pairs harbouring

significant LD) and group E, which was the least diverse and the

most recent, showing higher LD (r2.0.2 at 100 kb and more than

25% of marker pairs harbouring significant LD). These results

show that variable extents of LD are expected within the different

genetic groups and highlight the fact that different marker

densities will be required if association studies are planned in the

whole CS or in the different genetic groups (Table 4).

DArT outlier detection
A total of 1122 DArT markers were tested for evidence of

selection through an outlier detection approach. The consensus

scheme involving the six previously identified diversity groups was

Figure 4. Evolution of linkage disequilibrium for different sample sizes and distances. Mean r2 and the proportion of significant pairwise
r2 (i.e greater than P95) were computed for the CS and for subsets of accessions ranging from 25 to 150. Accessions were sampled using two
strategies. Firstly, random samples of 25, 50, 75, 100, 125 and 150 genotypes were extracted to calculate LD statistics. For each sample size, 10
random samples were analysed in order to estimate standard errors of the estimations (A). Secondly, a procedure designed to define subsets of
genotypes minimizing their redundancy and limiting the loss of diversity was used (MLST reported in (B)). A comparison of these two sampling
approaches for three sample sizes is provided in (C) and indicates that, with both strategies, mean r2 was overestimated for all distance classes in
small samples (n = 25). The proportion of significant pairwise r2 was always higher with the MLST, compared to the random approach, especially for
small distances and small sample sizes, highlighting the efficiency of this algorithm in providing a more accurate local LD estimation through the
reduction of background LD. After correcting for background structure, mean r2 decreased with distance from 0.2 (for the 0–10 kb distance class) to
0.02 and stabilized after 100 kb (B). Contrary to random sampling, an increase in mean r2 (B) was observed with the MLST approach when sample
sizes greater than 100 accessions were considered, suggesting that redundancy, and thus background structure, was introduced after this sample
size. These results indicate that, for the CS, a sample size of 100 accessions carefully selected to avoid redundancy and maximize diversity would be
an optimized sample size for LD estimation.
doi:10.1371/journal.pone.0033470.g004
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used for the differentiation-pattern analysis. The 99% confidence

interval obtained with the finite island model implemented in

LOSITAN led to the detection of 190 outlier loci, of which 11 loci

were candidates for diversifying selection and 179 loci were

candidates for balancing selection (Table 5). BAYESCAN analysis

led to the detection of 23 (2.5%) outlier loci with a log 10 (Bayes

factor) greater than 1.0, of which 9 were consistent with the

evidence of diversifying selection and 14 corresponded to balanced

polymorphism. Among these 23 loci, three remained outliers when

considering log 10 (Bayes factor) greater than 1.5 and only one

when considering log 10 (Bayes factor) greater than 2, with these

three markers corresponding to loci under diversifying selection.

The 14 outliers harbouring evidence of balancing selection with

BAYESCAN were also detected with LOSITAN, whereas only

one locus was common for the diversifying selection pattern.

LOSITAN enabled the detection of 179 loci (16% of the

markers) with evidence of balancing selection. This result is

congruent with Narum and Hess [45] who observed that

LOSITAN led, under several different demographic scenarios,

to the detection of elevated levels of false positives in the case of

balancing selection (14–30%). Consequently, while keeping

markers detected by LOSITAN and/or BAYESCAN (19 outliers)

for diversifying selection, we only kept markers detected using both

methods (14 outliers) for balancing selection. Nine DArT outliers

were located in annotated genes, whereas 17 were located at less

than 5 kb, and 5 were located at distances ranging from 5 to

11.7 kb from previously identified genes. Of the 31 genes located

in a 12 kb window from a DArT marker, 25 displayed homology

with characterized proteins (E values greater than 1.10210)

(Table 5).

Discussion

In this study, the properties of a set of physically anchored

DArT markers, in relation with the description of the genetic

structure of a worldwide sorghum collection, were compared to

two other marker systems. This resource also enabled to refine the

extent of linkage disequilibrium in the CS. Lastly, the genome

coverage reached with DArT markers enabled the identification of

genomic regions harbouring signatures of selection that are likely

to be of adaptive interest.

Genetic structure as revealed by different markers
Sorghum diversity has been recently analysed based on two

large panels [6,8] meant to be representative of worldwide

diversity and harbouring contrasting compositions in terms of

the geographical and racial origins of the accessions. These two

collections were analysed with relatively limited numbers of

markers and the stability of the genetic structures identified was

not clearly assessed.

Our study highlighted the relevance of the newly developed

DArT markers to describe the global genetic structure of

worldwide sorghum in comparison with other genetic markers.

RFLP and DArT markers provided more stable assignments of the

accessions compared to SSR markers and were globally more

congruent than with SSRs. Moreover, a data resolution analysis

applied to the three marker datasets [31] clearly indicated that the

information could be considered saturated only for the set of

DArT markers. The larger number of DArT markers certainly

contributed to that performance. Using the suggestion made by

Laval et al. [46] that m loci with k alleles per locus on average are

equivalent to m*(k-1) bi-allelic markers, our SSR data would be

equivalent to 40*10 = 400 and our RFLP dataset to 60*1.9 = 114

bi-allelic markers. The data resolution capacity of 114 DArT

markers appeared slightly higher than that of our RFLP dataset

and that of 400 DArT markers was markedly higher than that of

our SSR data set. While RFLPs and DArTs may have comparable

grounds in terms of sequence variation, the properties of SSR

variation, with high mutation rates and homoplasy, are likely to

hide some ancient phylogenetic signals. For instance, the

divergence between the northern and southern equatorial

accessions was not directly detected with this marker system.

While the global genetic differentiation estimates (Fst) were always

lower for SSRs, pairwise Fst between the considered genetic

groups were highly correlated between marker systems, as often

observed in a range of species [47–50]. This pattern fitted well

with the expectations developed through simulation work [51] in

the case of a low migration rate among highly differentiated

populations; it reinforced the view that sorghum domestication

involved early differentiation of the main genetic groups due to

geographical isolation and low gene flow in relation to farmer

practices [52,53].

The consensus scheme with six groups was consistent with the

racial and geographical pattern highlighted by previous analyses of

worldwide sorghum diversity [6–9]. Although it is clear that higher

levels of structure are biologically meaningful (Figure 4A), and that

a larger sampling would undoubtedly allow refining our

understanding of sorghum genetic structure, it is interesting to

note that this scheme has been found to be accurate in decreasing

the proportion of false positive tests (70%) due to population

structure in association studies [21]. In addition, this genetic

structure actually reflects different steps in the domestication

Table 4. Number of markers required for association mapping studies.

Group a = Nera Achieved convergence toleranceb Number of markers (r2 = 0.1) Number of markers (r2 = 0.3)

CS 3.63E-04 8.01E-06 .100 000 .350 000

A 4.03E-05 6.76E-06 .13 000 .50 000

B 5.22E-05 7.01E-06 .17 000 .65 000

C 1.17E-05 9.73E-06 .3500 .15 000

E 6.22E-06 7.95E-06 .2000 .8 000

F 1.41E-05 7.56E-06 .4500 .18 000

aDecay of LD with physical distance were fitted according to Ohta and Kimura (1969) [37] model: E (r2
ij) = 1/(1+4Nerdijr). Where, r2

ij stands for the LD value between
markers i and j, Ne for the effective population size, r for the per base recombination rate and dij for the distance in base pairs between markers i and j. The analysis was
performed with the nls function in R. The composite parameter a = Ner was estimated for the whole CS and the different genetic groups.
bAchieved convergence tolerance obtained with the nls function in R.
doi:10.1371/journal.pone.0033470.t004
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Table 5. DArT markers presenting evidence of selection.

Sa Mb
DArT Gene
bank accessionc

BAYESCAN
Fstd

LOSITAN
Fste

Chr/Closest
gene Disf

Protein
Accession

Protein
descriptiong E-Value

Similarity
%

Biological
Processh

b b+l FI849516 0.11 (1.01) 0.02 (3.E-04) 2/Sb02g005150 0.0 Q851R2 Argonaute MEL1 0.E+00 82 R

b b+l FI847862 0.10 (1.13) 0.00 (3.E-05) 2/Sb02g035650 0.7 Q6ZL42 Probable histone H2A.2 7.E-37 100 DR

b b+l FI849537 0.11 (1.08) 0.02 (2.E-04) 2/Sb02g037020 0.0 Q8RWS8 Pentatricopeptide
repeat-containing protein

0.E+00 79 R

b b+l FI849079 0.11 (1.01) 0.01 (0) 3/Sb03g001840 0.0 Q94F40 GDSL esterase/lipase 4.E-66 58 o

b b+l FI847745 0.10 (1.18) 20.02 (0) 4/Sb04g024000 2.0 Q8GWP0 Transcription factor MYB39 4.E-56 86 DR

b b+l FI849457 0.09 (1.38) 20.02 (0) 5/Sb05g026780 0.0 No hit _ _ _ _

b b+l FI848743 0.10 (1.25) 20.01 (0) 5/Sb05g027033 0.1 Q39214 Disease resistance
protein RPM1

5.E-36 43 D

b b+l FI848764 0.10 (1.11) 20.01 (0) 7/Sb07g003170 69.9 Q2V9B0 Transcription
factor MYB1R1

2.E-25 57 S

b b+l FI849152 0.11 (1.00) 0.00 (0) 7/Sb07g026000 1.1 Q74ZH9 Glycerophosphodiester
phosphodiesterase

1.E-14 40 o

b b+l FI849546 0.09 (1.31) 20.02 (0) 9/Sb09g015250 0.0 Q9LRR4 Putative disease resistance
RPP13-like protein 1

5.E-59 46 D

b b+l FI849032 0.10 (1.30) 20.01
(2.E-05)

9/Sb09g021330 0.0 Q0WP01 Probable peptide/nitrate
transporter

2.E-151 72 o

b b+l FI849030 0.10 (1.25) 20.01 (0) 9/Sb09g028567 0.7 No hit _ _ _ _

b b+l FI849109 0.10 (1.10) 20.02 (0) 10/Sb10g023860 0.0 Q9LY87 E3 ubiquitin-protein
ligase RGLG2

0.E+00 88 M

b b+l FI847767 0.10 (1.08) 20.01 (0) 10/Sb10g025040 2.0 No hit _ _ _ o

d b FI847680 0.55 (1.14) 0.72 (0.96) 1/Sb01g019560 7.4 Q86TV6 Tetratricopeptide
repeat protein 7B

6.E-13 62 o

d b FI848942 0.58 (1.80) 0.72 (0.97) 2/Sb02g026890 3.9 No hit _ _ _ _

d b FI848913 0.54 (1.04) 0.75 (0.98) 2/Sb02g037690 1.0 Q920Q6 RNA-binding protein
Musashi homolog 2

9.E-47 54 DR

d b FI847959 0.53(1.13) 0.68 (0.94) 3/Sb03g045960 2.6 O81117 Cytochrome P450 94A1 5.E-88 56 D

d b FI847986 0.61 (2.47) 0.74 (0.98) 5/Sb05g007936 99.3 Q6H8D5 Beta’-coat protein 2 2.E-21 52 o

d b FI848529 0.54 (1.04) 0.52 (0.75) 6/Sb06g032030 1.9 P13240 Disease resistance
response protein 206

3.E-04 50 D

d b FI847989 0.58 (1.13) 0.58 (0.79) 8/Sb08g019196 6.0 Q7XWS7 Formin-like protein 12 7.E-159 90 o

d b FI849519 0.57 (1.45) 0.61 (0.89) 8/Sb08g020740 0.3 Q2QMH2 Protein ROOT HAIR
DEFECTIVE 3 homolog 1

0.E+00 84 M

d b+l FI849491 0.61 (1.69) 0.78 (1.00) 4/Sb04g000390 0.7 P16157 Ankyrin-1 3.E-13 54 o

d l FI849130 0.35 (20.81) 0.74 (0.99) 1/Sb01g046750 0.0 Q0DV28 Armadillo repeat-containing
kinesin-like protein 1

0.E+00 83 o

d l FI847843 0.44 (20.10) 0.93 (1.00) 2/Sb02g033230 3.5 P40691 Auxin-induced protein
PCNT115

2.E-132 86 o

d l FI848068 0.39 (20.28) 0.80 (1.00) 3/Sb03g006130 6.2 P12863 Triosephosphate isomerase 2.E-128 97 o

d l FI849137 0.39 (20.47) 0.91 (1.00) 3/Sb03g026270 0.3 Q8LBB2 SNF1-related protein kinase
regulatory subunit gamma 1

6.E-42 62 o

d l FI848736 0.56 (0.94) 0.88 (1.00) 4/Sb04g036180 0.6 Q8VEH6 Cobalamin synthase W
domain-containing protein 1

3.E-56 56 o

d l FI849358 0.38 (20.55) 0.89 (1.00) 5/Sb05g000450 4.8 Q00610 Clathrin heavy chain 1 0.E+00 77 o

d l FI847787 0.51 (0.38) 0.90 (0.99) 6/Sb06g003220 11.7 Q9SWG3 Protein FAR-RED IMPAIRED
RESPONSE 1

4.E-14 40 F

d l FI849042 0.48 (0.36) 0.80 (0;99) 6/Sb06g017640 0.0 No hit _ _ _ _

d l FI848273 0.39 (20.46) 0.91 (1.00) 10/Sb10g009520 9.5 Q84L30 Putative DNA repair protein
RAD23-4

3.E-73 77 DR

d l FI849518 0.58 (0.56) 0.98 (0.99) 10/Sb10g020500 3.3 Q9FLG1 Beta-D-xylosidase 4 0.E+00 59 CW

aType of selection detected, b stands for balancing selection whereas d stands for diversifying selection.
bMethod used to identify the considered locus, b stands for BAYESCAN (log10(Bayesfactor).1, l for LOSITAN (CI.0.99) and bl corresponds to loci detected with both methods.
cThe DArT marker name corresponding to the genebank accession provided can be found in Table S2 (Marker_Name column).
dThe Fst value obtained with BAYESCAN, the log 10 (Bayes factor) is provided in brackets.
eThe Fst value obtained with LOSITAN, the Pvalue corresponding to P(Simul Fst,sample Fst) is provided in brackets.
fDistance between DArT marker and the closest gene in kb.
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history of sorghum, groups A and B being representative of the

original centre of domestication (also in accordance with high

levels of diversity observed for the different marker systems),

whereas the remaining groups can be considered as secondary

centres of diversification (West Africa: C and D, Southern Africa:

E and F).

Linkage disequilibrium
Current knowledge on LD in Sorghum bicolor rests on the study of

Hamblin et al. [12] on 24 landraces and 9 wild sorghums chosen to

maximize the diversity and capture the evolutionary history of S.

bicolor studied across six unlinked regions of 40–100 kb. The

development of physically anchored DArT markers evenly spaced

on the sorghum genome and genotyped on 177 accessions

representative of worldwide cultivated sorghum brings about

complementary observations, in terms of accession sub-sampling

and marker density requirements for association mapping within

the whole population and the various genetic groups.

We showed how small sample sizes lead to an overestimation of

background LD and to a concomitant underestimation of physical

LD, as was observed in maize [36]. However, we also showed how

a sampling strategy designed to minimize the redundancy between

accessions without losing diversity (Maximum Length SubTree)

helped diminish background LD and retrieve less biased LD

estimates. It also showed that an optimum sampling size to

efficiently evaluate LD within this sorghum worldwide sample

would be around 100 accessions carefully chosen with the MLST

algorithm.

As mentioned previously by Hamblin et al. [12], LD in sorghum

largely decays by 10–15 kb. Yet our results also indicated that

significant LD could be found at much longer distances. We found

significant LD for about 20% of the pairs of markers in the 50–

100 kb range. We also found some regions with significant LD

spanning between 0.5 and 2 Mbp on each chromosome, 5 Mbp

on chromosome 7 and more than 12 Mbp on chromosome 10;

these cases of long range LD probably reflect the occurrence of

introgression from distant genetic groups or selection events.

The extent of LD within the different genetic groups appeared

variable. The most diverse groups (A and B) exhibited rapid LD

decay in contrast with the less diverse groups E and F. These

results are consistent with the current evolutionary scenario for

cultivated sorghum: genetic groups from East Africa (which

contribute to the main share of groups A and B) correspond to

the primary centre of domestication, with high diversity and many

private alleles, whereas the genetic groups from southern Africa (E

and F) correspond to more recent secondary centres of

domestication that have been strongly affected by genetic drift,

leading to lower diversity and few private alleles.

Although it is clear that more markers will be required to obtain

accurate estimates of the marker density required for association

mapping especially to take into account within chromosome LD

variability, we roughly estimated that more than 100,000 markers

may be required for whole genome scans within the CS if an r2

threshold of 0.1 is considered and 350,000 for a threshold of 0.3.

Within the different genetic groups considered, these require-

ments varied between 2000 (8000) for group E, which is one of the

least diverse, to 17,000 (65,000) for group B, which encompasses

wide diversity. It is likely that the required marker density

estimated from our CS will also stand for the converted panel

analysed by Casa et al. [8], and Brown et al. [9], as it also relies on

extremely wide diversity. In comparison with other monocotyle-

donous species of agronomic importance, the LD decay pattern

observed for sorghum (r2.0.1 for intermarker distance comprised

between 10 and 50 kb) lies between maize (extent of LD

comprised between 1 and 10 kb depending on chromosomes

[36]) and rice (extent of LD probably over 500 kb in Oryza sativa

japonica [54]). These results highlight the potential merits of a

comparative analysis between these three species, for traits of

general interest for which QTLs have been detected in the same

regions, each one providing different levels of accuracy enabling

progressively fine mapping of the gene of interest (assuming that

the different species share the same genetic architecture).

Signatures of selection
The search for targets of selection in sorghum has so far mainly

relied on the analysis of small panels of accessions characterized

with limited numbers of loci [11,13–17]. The development and

genotyping of a large set of physically anchored DArTs offered the

opportunity to detect genomic regions affected by selective events.

Given the genetic structure of sorghum and its likely coincidence

with some adaptive processes, the search for loci exhibiting higher

than expected differentiation between groups, as well as loci that

maintain high diversity levels within the different groups, will lead

to candidate genes for positive or balancing selection, respectively.

Whilst this first genome scan for selection in cultivated sorghum

can be considered preliminary, given its density, it led to some

encouraging results. Of the 33 outlier loci identified, 26 were

located at less than 5 kb from annotated genes and 9 were located

in genes; this preferential location of the outlier markers in the

vicinity of annotated genes provides the first support for their

putative relevance. In terms of gene function, the most represented

biological processes were related to disease resistance (4 genes) and

DNA repair, transcription and translation regulations (4 genes)

(Table 5).

Marker sPb-9936 (FI849546) was located within gene

Sb09g01525, corresponding to a putative disease resistance

RPP13-like protein 1 (At3g14470) and marker sPb-1794

(FI848743) was located at 120 bp from Sb05g027033, corre-

sponding to a putative disease resistance protein RPM1. For both

genes, the evidence of balancing selection detected in this study

corroborates observations reported in other species (RPM1: [55–

57], RPP13: [58]).

Marker SbMITE-188058 (FI847787) was located at 11.7 kb

from a homologue of the FAR-RED IMPAIRED RESPONSE 1

(FAR1) protein isolated in Arabidopis thaliana and displayed

evidence of diversifying selection. FAR1 is a transposase-derived

transcription factor that mediates phytochrome A responses to far

red light [59–62]. Such a mechanism is directly involved in the

control of flowering and growth. In Picea abies, Clapham et al. [63]

gProtein presenting the highest similarity with the gene located in the vicinity of the DArT marker as detected by a BlastP against the Swissprot database, the Evalue
and Similarity percentage at the amino acid level are provided in the following columns.
hBiological process in which the gene is involved: D: Disease resistance, S: Abiotic stress resistance, F: Flowering regulation, CW: Cell wall establishment, M: plant
morphology, R: reproduction, DR: DNA repair or Regulation of transcription or Regulation of translation, o: others.
doi:10.1371/journal.pone.0033470.t005

Table 5. Cont.
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showed a clinal variation in requirement for far red light to

initiate budset depending on the latitudes of origin of the

populations. In our study, group F, made up exclusively of kafir

accessions from South Africa, was the most differentiated from

the others in terms of allelic frequencies at this locus (Figure 5B).

In addition, these accessions originate from the southernmost part

of the sorghum distribution area and display a very low

photoperiod sensitivity index (Figure 5A). Based on these

observations, it is tempting to propose the contribution of the

genomic region encompassing this sorghum homologue of FAR1

protein as a potential driver of adaptation to southern latitudes

through, at least in part, lower photoperiod sensitivity. However,

an increase in the frequency of neutral alleles can also be

observed at the edges of a range expansion leading to the same

signal that would be observed in the case of positive selection

[64]. Such a scenario cannot be ruled out in our case, as

Southern African populations indeed correspond to the extreme

range of sorghum distribution and because low gene flow occurs

with other genetic groups. As proposed by Mariac et al. [65], we

are planning to test the putative involvement of this genomic

region in the genetic control of photoperiod sensitivity taking an

association mapping approach.

Marker sPb-9731 (FI849518), displaying a signature of diver-

sifying selection, was located at 3.3 kb from a homologue of a

Beta-D-xylosidase 4 gene isolated in Arabidopis thaliana (AtBXL4)

and involved in cell wall establishment [66]. The most differen-

tiated group was group D which encompassed guinea margar-

itiferum from western Africa. These accessions present singular

cell wall characteristics compared to the others, displaying high

similarities with wild sorghum accessions (Sorghum bicolor ssp

verticilliflorum) in terms of fibre, lignin, cellulose and hemicellu-

lose content (personal communication, David Pot).

Markers Pb-9432 (FI849491) and sPb-9688 (FI849516) finely

tagged two genes (Ankyrin-1 and Argonaute MEL1 respectively)

which, in other plants (Arabidopsis thaliana and white spruce), have

been reported to display deviations from neutral expectations,

although these studies did not conclude on the same type of

selection [67,68]. These diverging results are not unexpected, as

the type of selection acting on a gene can be different between

species or environments.

All in all, our results often contribute to an array of independent

studies which provided congruent information underlying the

putative importance of the genomic regions identified in the

genetic control of key adaptive traits.

Conclusions
In this study, characterization of a large set of physically-

anchored DArT markers on a germplasm sample representative of

worldwide cultivated sorghum showed its relevance for describing

genetic structure and for exploring genome-wide applications.

Although a higher marker density will be required to accurately

describe LD variability at the whole genome scale, this study

contributed to reach a better image of LD decay in sorghum and

provided the first guidelines for the marker densities required for

association mapping. We showed that optimization of population

composition through the MLST algorithm is an efficient way of

obtaining LD estimates that are less affected by population

structure. The set of markers developed also enabled the

identification of genomic regions of potential adaptive interest

through an evolutionary based strategy, which constitutes a

complementary approach to association studies in identifying the

genetic factors affecting variability in traits of interest. This study

contributes to the genomic resources available for the sorghum

community, as most of the accessions analysed also belong to the

Reference Set that has been developed under the Generation

Challenge Programme (http://test1.icrisat.org/sorghum/Sorghum_

Reference.htm).

Supporting Information

Figure S1 Collinearity of physical and genetic maps.
This figure illustrates the genome coverage of the physical (SBI)

and genetic (LG) maps of sorghum with the DArT genotyping

tool. The genetic map (CIRAD Map mentioned in Mace [19] et al.

2009) includes 507 DArTs, 180 SSRs and 52 RFLPs. The physical

map includes 1346 non-redundant DArTs (1412 loci), with 436 in

common with the genetic map and 138 SSRs. Ninety-eight

percent of the markers are collinear. PstI-BanII DArT markers are

indicated in green, MITE DArT markers are indicated in red and

SSR and RFLP markers are indicated in grey.

(TIF)

Figure 5. Concomitant variability of the photoperiod sensitiv-
ity index with the allelic frequency of the DArT SbMITE-
188058. The data for the photoperiod sensitivity index (Kp, which
corresponds to the decrease in the duration of the vegetative phase
between two sowing dates) presented in (A) were obtained from
Clerget et al. [70] who used the same collection of accessions. Kp varies
from 0 for photoperiod-insensitive varieties, which do not change the
duration of their vegetative phase with the sowing date, to 1.0 for the
most strongly photoperiod-sensitive varieties which maintain their
calendar date of flowering constant by reducing the duration of their
vegetative phase. A total of 136 accessions with a membership
coefficient greater than the 0.6 threshold were considered. These
accessions corresponded to 40 accessions from group A, 27 from group
B, 21 from group C, 11 from group D, 17 from group E and 22 from
group F. An Anova analysis indicated highly significant differences
between the genetic groups (p value,2.2e-16) with genetic group F
harbouring a low photoperiod sensitivity index. An analysis of the
variability in the allelic frequency of the DArT marker SbMITE-188058
(FI847787) located at 11.7 kb from a homologue of the FAR-RED
IMPAIRED RESPONSE 1 protein isolated in Arabidopis thaliana (B)
highlighted the specificity of group F, suggesting a potential role of this
gene in the genetic control of variability in photoperiod sensitivity.
doi:10.1371/journal.pone.0033470.g005
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Figure S2 Correlations between linkage disequilibrium
estimates obtained either with the Random or the MLST
sampling strategies and the whole Core Sample. The

increase in correlations with sample size was much faster with

random sampling than with the MLST strategy. These observa-

tions probably come from the fact that in the random sampling

strategy, the redundancy available in the whole CS was

maintained in the sub-samples and the groups that are the most

represented in the CS contributed more than those that are under-

represented, leading to the same biases as those observed with the

whole CS.

(TIFF)

Figure S3 Evolution of linkage disequilibrium in the
different genetic groups. Mean r2 (A) and the proportion of

significant pairwise r2 (i.e. greater than P95) (B) were computed for

the different genetic groups. Mean r2 were quite different between

the genetic groups. Percentages of significant values were also

variable between groups, with groups A and B, which were the

most diverse, showing lower LD (r2 = 0.1 at 100 kb and less than

10% of marker pairs harbouring significant LD) and group E,

which was the least diverse and the most recent, showing higher

LD (r2.0.2 at 100 kb and more than 25% of marker pairs

harbouring significant LD).

(TIFF)

Table S1 List of accessions used in this study.

(XLSX)

Table S2 DArT marker information.

(XLSX)
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