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Abstract
Background: Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the
semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic
linkage maps are needed for marker assisted breeding but are not available for cowpea. A single
feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput
genotyping and high density mapping.

Results: Here we report detection and validation of SFPs in cowpea using a readily available
soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical
analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs
were enumerated between two parents of a recombinant inbred line (RIL) population segregating
for several important traits including drought tolerance, Fusarium and brown blotch resistance,
grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing
amplicons yielded a SFP probe set validation rate of 68%.

Conclusion: We conclude that the Affymetrix soybean genome array is a satisfactory platform for
identification of some 1000's of SFPs for cowpea. This study provides an example of extension of
genomic resources from a well supported species to an orphan crop. Presumably, other legume
systems are similarly tractable to SFP marker development using existing legume array resources.

Background
Cowpea (Vigna unguiculata L. Walp) is grown extensively
as a food and fodder crop in West Africa, lower elevation
areas of eastern and southern Africa, north-eastern Brazil,
parts of the Middle East, India, and the south-eastern and
south-western regions of North America [1]. Like com-
mon beans (Phaseolus vulgaris L.) which are combined

with maize or other starchy staple crops in other parts of
the world, dry grain cowpea is consumed with lower pro-
tein cereal and root/tuber staples to provide an adequate
protein quantity and quality to hundreds of millions of
rural and urban consumers in West Africa [2,3]. Cowpea
forage is used for livestock and cowpea hay plays a critical
role as fodder during the dry season in West Africa [4].
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'Longbean' or 'Asparagus bean' of cowpea cultivar group
Sesquipedialis is considered one of the top-ten Asian veg-
etable crops and is grown on at least 400,000 hectares
worldwide for production of fresh 'green' or 'snap' beans.

Cowpea (2n = 2x = 22) with genome size ~600 Mb
belongs to the genus Vigna Savi. (subgenus Vigna sect.
Catiang) in the Phaseoleae [5]. Genomic resources such
as cDNA libraries, ESTs and BAC libraries have been mea-
gre in cowpea [6] until very recently. High-resolution
genetic maps provide breeders the ability to analyze the
inheritance of genes of interest, monitor the transmission
of specific genes or genomic regions from parents to
progeny, and accelerate map-based cloning [7,8]. How-
ever, relatively few genetic resources are available to cow-
pea breeders, and molecular marker-based selection is
only possible for a few traits [6,9-12]. Efforts made previ-
ously for linkage mapping in cowpea include 92 RFLP
markers [13], 181 markers that are mostly RAPDs [14],
and 242 markers that are mostly amplified fragment
length polymorphisms (AFLP) together with 17 biologi-
cal resistance traits and resistance gene analogs [9]. Cur-
rently available genetic maps for cowpea are of limited
utility for breeders due to the lack of markers tightly
linked to important traits such as root-knot nematode
resistance [10].

Any marker system with increased throughput, decreased
cost per data-point, and greater map resolution is highly
desirable [7,15] for genetic mapping and marker assisted
breeding. Oligonucleotide-based microarrays have been
used in recent years to identify genetic polymorphisms
[16]. Winzeler et al. [17] first reported the hybridization of
labelled genomic DNA to oligonucleotide microarrays to
identify sequence polymorphisms in haploid yeast. Bore-
vitz et al. [18] coined the term "single feature polymor-
phism" and demonstrated that this approach can be
applied to organisms with somewhat larger genomes, spe-
cifically Arabidopsis thaliana with a genome size of 140
Mb. Similarly, whole-genome DNA-based SFP detection
has been accomplished in rice [19], which has a genome
size of 440 Mb, though with a higher false discovery rate,
as will be discussed later. For barley, which has a 5300 Mb
genome composed of more than 90% repetitive DNA, Cui
et al. [20] and Rostoks et al. [21] hybridized the Affymetrix
Barley1 expression microarray with RNA-derived cRNA to
reduce the target complexity, enabling detection of some
thousands of SFPs. Array-based genotyping by hybridiz-
ing with cRNA instead of DNA was initially accomplished
in yeast [22], and subsequently in Arabidopsis [23] follow-
ing the work cited above in barley. SFPs have been used
for genome-wide association mapping and linkage dise-
quilibrium studies [24], and to estimate mutation and
recombination parameters in populations [25]. Thus SFPs
have become an attractive marker system for various

applications including parental polymorphism discovery,
which is the present subject of our work on cowpea.

Cowpea has been identified as an "orphan crop" recom-
mended for increased support for biotechnology research
[26]. There are many opportunities to apply knowledge
from "model species" such as Arabidopsis, rice (Oryza
sativa), and Medicago truncatula to crops like cowpea. Rel-
atively large genetic gains can be expected from invest-
ments in applied plant breeding in cowpea [6].

SFP's based on expressed sequences are an efficient source
of large number of genic markers in cowpea relative to
moderate-throughput and usually non-genic marker sys-
tems such as RAPDs, AFLPs and SSRs. Here we show that
the Affymetrix soybean genome array is a satisfactory sys-
tem for SFP discovery in cowpea, which belongs to the
same family as soybean. From this observation, we claim
that SFPs can also be identified efficiently for other
"orphan" legumes using existing genome arrays for soy-
bean or Medicago truncatula.

Results
Cross species platform for array hybridization
When cowpea cRNAs were hybridized to the soybean
genome array, the frequency of "present" calls ranged
from 11 to 14.7% of all probe sets on the array (see Meth-
ods for the definition of "present" call). This is a frequency
of 18 to 24.7% of probe sets specific to soybean (Table 1)
since only 61% of the probe sets target soybean genes (see
Methods).

SFP detection and validation
Robustified projection pursuit (RPP) [20] was used for
SFP detection between two parental genotypes (CB46 and
IT93K-503-1) of a RIL population segregating for several
important agronomic traits. As stated in Methods, RPP
provides a list of SFP probe sets and single probes posi-
tioned directly over genetic polymorphisms. Because the
RPP method depends on the availability of "present" calls
in both of the comparison genotypes, and because only
about 20% of the probe sets are called "present" using
cowpea RNA, only about 7,000 of the 37,500 soybean
probe sets have the potential to detect SFPs in cowpea
from typical cowpea RNA samples. Using a top 15% out-
lying score cut-off, we generated a list of 1058 putative SFP
probes between genotypes CB46 and IT93K-503-1. A full
list of these SFPs and their outlying scores is provided in
Additional file 1. The question then was, "Do these statis-
tically detected SFPs represent real genetic polymor-
phisms in cowpea?"

A schematic diagram of SFP detection and validation is
given in Figure 1. Plots of the log intensities, affinity dif-
ferences and individual outlying scores for a representa-
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tive probe set (Gma.1863.1.S1_at) under both drought-
stress and non-stress conditions are shown in Figure 2.
The intensity differentiation is highest at probe 2 between
CB46 and IT93K-503-1, indicating polymorphism at this

probe position [20]. Probe 2 was selected as the best SFP
probe by the RPP method based on having the highest
outlying score.

Table 1: Percent present calls from cowpea transcript hybridization to soybean genome array.

Genotype Treatment Replicate % Present call* % Present call* Glycine max

CB46 unstressed 1 14.7 24
CB46 unstressed 2 13.9 22.8
CB46 stressed 1 11.5 18.7
CB46 stressed 2 12.5 20.4
IT93K-503-1 unstressed 1 14.3 23.4
IT93K-503-1 unstressed 2 15.2 24.7
IT93K-503-1 stressed 1 13.9 22.8
IT93K-503-1 stressed 2 11 18

Range 11 – 14.7 18 – 24
Mean 13.4 21.9

*See Methods for definition of "present call"

Schematic diagram of SFP validation protocolFigure 1
Schematic diagram of SFP validation protocol.

Cowpea RNA hybridization on to soybean array and SFP detection by RPP method

Blast the SIF of SFP probe sets against cowpea methyl filtered sequences

Choose the best hit and check if the region of good alignment (>90% seq identity) covers the SFP probeChoose the best hit and check if the region of good alignment (>90% seq. identity) covers the SFP probe

Design PCR primers from the cowpea sequence flanking the SFP probe region

Run PCR on both genotypes

E i th l t if th i h d d i l PCR d t f b th tExamine the gel to see if the primer has produced a single PCR product for both genotypes

Purify PCR products using Qiagen PCR purification Kit

Sequencing of the PCR product using automated DNA sequencer

Align sequences using AlignX to see if there is polymorphism in the SFP region
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PCR and gel electrophoresis
A list of primers used and the expected and observed PCR
amplicon sizes are provided in Table 2. PCR amplicon
sizes ranged from 400 – 450 bp. A representative gel
image of PCR amplification is shown in Figure 3. For the
nine primer pairs (GS1 to GS9), the amplicon sizes were
as predicted by Primer3 (see Methods), the primer design-
ing software. For primer pair GS 10, non specific bands
were detected in both genotypes. For this primer pair the
'Tm' was increased during PCR but still no specific band of
the predicted size was amplified. Primer pairs yielding
such anomalies, or which yielded no amplicon from one
or both cowpea genotypes (not shown), were not pursued
with amplicon sequencing. For calculation of the valida-
tion rate, the numerator is the number of amplicons con-
taining a polymorphism within the region spanned by a
SFP probe, and the denominator is the number of ampli-
cons from which sequences were generated.

Alignment of amplicon sequences for SFP validation
To estimate the SFP validation rate we selected 25 putative
SFP probe sets. A total of 17 (68%) of these 25 SFP probe

sets were validated by amplicon sequences. A representa-
tive alignment of genomic amplicon sequences with the
target sequence of probe set Gma.1863.1.S1_at is shown
in Figure 4. Probe position 2 spans a polymorphism (a
SNP in this case), as predicted by the RPP method. Align-
ments of the 20 validated SFP probes from the 17 vali-
dated probe sets (three probe sets each contained two SFP
probes) are shown in Figure 5. Among these 20 validated
SFP probes, 15 SFP (75%) were positioned over a single
SNP, 2 (10%) were positioned over only a single nucle-
otide insertion or deletion (INDEL), 1 (5%) spanned one
SNP and one single nucleotide INDEL, 1 (5%) spanned
two SNPs, and 1 (5%) spanned two SNPs and a dinucle-
otide INDEL.

Discussion
Array-based genotyping
The availability of arrays designed to measure gene expres-
sion for a wide range of species has spawned considerable
interest in identifying single feature polymorphisms
(SFPs) from DNA hybridization and transcriptome data
[27]. SFPs derived from transcript sequences provide a

Plots of signal intensities, affinity differences and individual outlying scoresFigure 2
Plots of signal intensities, affinity differences and individual outlying scores. Left panels: log intensities (PM, perfect 
match) for a representative probe set (Gma.1863.1.S1_at) from two genotypes. Middle panels: the differences of average log 
intensities between two genotypes. Right panel: individual outlying scores for each probe. Dotted lines indicate IT93K-503-1 
and solid lines indicate CB46. This SFP was identified both in stress (upper layer) and non-stress (lower layer) datasets.
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link to structural genes and are particularly attractive for
species which lack sequence resources for marker develop-
ment. The RPP method [20] is distinct from several com-
monly used statistical approaches to SFP identification
[27] in that the RPP method does not accept expression
level polymorphisms, which may be attributed to linked
cis-acting regulatory regions or to unlinked trans-acting
factors. Instead, RPP limits its SFP calls to those that are
most likely to be positioned over a genetic polymor-
phism. This maximizes the relationship between the
probe set functional annotation and the gene containing
the detected polymorphism, which consequently maxi-
mizes the potential for cross-species synteny mapping
using SFPs. A simplification of the RPP method has been
used for 16,000 Mb hexaploid wheat to map markers
termed "high variance probe sets" to delimit the positions
of translocation breakpoints using wheat-rice synteny
[28]. Here we report cross species application of the

A representative gel image of PCR amplificationFigure 3
A representative gel image of PCR amplification. 
Aliquots of the PCR products of ten (GS1 to GS10) repre-
sentative primer pairs were loaded and separated on a 1.2% 
agarose gel. 1, CB46; 2, IT93K-503-1; M, size marker. The 
arrows indicate non-specific amplification.

GS1 GS2 GS3 GS4 GS5 GS6 GS7 GS8 GS9 GS10
M    1    2     1     2     1    2    1     2     1    2   1    2    1    2     1    2     1     2     1    2    M

Table 2: Primer list and amplicon lengths for 17 validated SFP-containing amplicons.

Affymetix probe 
set

Primer Name Forward primer (5' 
– 3')

Reverse Primer (5 
– 3')

Predicted* 
amplicon size (bp)

Observed# ampli-
con size (bp)

Gma.7528.1.S1_s_at GS01 GTACCTTCCGGTG
GATTCAA

TGGAATGATCACT
TGGCAGA

435 439

GmaAffx.93250.1.S1_s
_at

GS02 AATCCGTGTGCCA
GGAATAG

ACCCAATCAGACC
AATGGAG

416 420

Gma.1164.2.S1_at GS03 GTCTTTTTGGCCT
TGCATGT

TCTCAGCTTCTCC
GTCCATT

422 424

Gma.1555.1.S1_a_at GS04 AACAACAGAGTGA
GCCAGCA

ACCAGGGTACCTC
CCTTGAC

400 402

Gma.1863.1.S1_at GS07 GCAGGAGTGCGTT
TACCCTA

TGCTTTCACACCG
CAAATTA

417 424

GmaAffx.86591.1.S1_
at

GS08 TGGGAGCTGTGTC
AACAGAA

GGCCTCTCAAACT
GAACGTC

431 433

Gma.4431.1.S1_at GS12 TAGCAGCCAGCCT
GTGTATG

CGAAGGGTCCTAA
ACAACCA

447 449

Gma.8053.1.S1_at GS16 ATCTGAGGCAGCA
GCAAAAG

TGCCATGGCCACT
TTAGATT

402 407

GmaAffx.62051.1.S1_
at

GS21 GAAGCGTTGCATG
CTTATCC

CATTCCAGTCACA
CCACCAG

429 432

GmaAffx.58155.1.S1_
at

GS22 GTTAAACGCACCG
ATGGACT

ACACACTCGCCAA
ACAATGA

404 406

Gma.5674.1.S1_a_at GS23 GCGGTGTTTCTTT
CATGGTT

TCCCTCGTATATT
CGGCATT

429 433

Gma.1449.1.S1_s_at GS24 GCCTTTCTTCAGT
GGATTGG

TGATTCACAACCC
CATTTGA

442 444

Gma.13293.1.S1_at GS27 TCTGCATTAAGCC
ACTGCAC

AATAGCAGCACCA
CGATTCC

442 441

GmaAffx.14067.1.S1_
at

GS29 GGCATCCCTCTCA
AGAATGT

GCAACAAAAATGG
GGTGAGA

424 427

GmaAffx.69322.1.S1_
at

GS31 AGTCTTATGTTGG
CACAAAAACA

GCCAACTCTACCC
ACCAAGA

433 433

GmaAffx.28120.1.s1_a
t

GS36 CATCAGACACAGA
CGGCACT

TCACACCAATCTC
CCAAACA

414 413

GmaAffx.70836.1.S1_
at

GS37 CGTTCCAGTGGAC
ATTATGC

AGATTCTTTTTGC
CCAAGCA

441 431

*Predicted size indicates the PCR product size anticipated by the primer3 program.
#Observed size indicates size of amplicon sequences after assembling the bidirectional sequence reads.
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Affymetrix soybean genome array by RPP for polymor-
phism identification in parents of a cowpea recombinant
inbred line mapping population.

The false positive rate in SFP detection is an important
consideration for application of SFPs to genetic mapping.
The false positive rate is essentially the percentage of sta-
tistically defined SFPs that are not valid at the DNA
sequence level. Ideally, the false positive rate would be
100% minus the validation rate from amplicon sequenc-
ing. However, for cowpea and other species which lack
complete genome sequence information, incomplete
knowledge of genes, and gene families in particular, limits
the validation rate to a theoretical maximum less than
100%. This is because PCR primers for amplicon produc-
tion must be designed only from known sequences and
therefore cannot always target the same gene detected by
a SFP probe. Amplification of the wrong member of a
gene family bearing no polymorphism can result in a false
non-validation of a SFP (false negative). We had access to
sequences of less than 70% of all cowpea expressed genes,

and therefore also to less than 70% of the members of any
given multigene family. This absence of sequence infor-
mation would tend to cause an overestimation of the false
positive rate. However, the selection of SFP probe sets for
validation was somewhat skewed toward SFPs with higher
outlying scores, which may cause an overestimation of the
validation rate. Therefore, the estimated 68% validation
rate and inferred 32% false positive are only rough esti-
mates. We have observed that at least 50% of the non-val-
idated cowpea SFPs are in genes that are multi-gene family
members. An extreme case of multigene families comes
from a study of Medicago truncatula nodules, which
revealed the NCR (nodule-specific cysteine rich) gene
family with more than 300 members [29].

A false positive rate of about 5% in SFP detection was
reported in yeast [17] and 3% in Arabidopsis [18] using
genomic DNA. In contrast, approximately a 25% false
positive rate was reported in 440 Mb rice using genomic
DNA [19], and 10–20% in 5300 Mb barley using RNA-
based datasets and RPP [20].

Alignment of cowpea amplicon sequences related to a probe set (Gma.1863.1.S1_at) and its target sequence from the soybean SIFFigure 4
Alignment of cowpea amplicon sequences related to a probe set (Gma.1863.1.S1_at) and its target sequence 
from the soybean SIF. Polymorphic residues between CB46 and IT93K-503-1 are highlighted in grey, polymorphic residues 
between cowpea methyl filtered sequence and soybean SIF are in black. The position of SFP probe number 2 detected by the 
RPP method is underlined. Arrows indicate SNPs. I, IT93K-503-1; C, CB46; G, cowpea methyl filtered sequence; S, target 
sequence from soybean SIF.

SFP iti

I: CTGTTCGTGCCCGAATCAGGAATGTAGCCCCAAACCTAGTGAACGTGGATGAGAGAGAACCAGCCACATTGCCATCTTCACTG :  83 
C: CTGTTCGTGCCCGAATCAGGAATGTAGCCCCAAACCTTGTGAACGTGGATGAGAGAGAGCCAGCCACATTGCCATCTTCACTG :  83 
G: CTGTTCGTGCCCGAATCAGGAATGTAGCCCCAAACCTAGTGAACGTGGATGAGAGAGAACCAGCCACATTGCCATCTTCACTG : 83

SFP position

G: C G CG GCCCG C GG G GCCCC CC G G CG GG G G G G CC GCC C GCC C C C G : 83
S: CCGTTCGTGCCCGAATCAGTACTGTAGCCCCAAACCTTGTGAACATGGATGAGAGAGAACCGGCCACATTGCCATCTTCACTC :  83 
                                                                                              
                    
I: AGACCATCCTTCACTCAGAAGGTAGACACAACTCCATTCGGGACTGTAATTGAAAATTTCTATATGACCGACGCCATAACCAG : 166 
C: AGACCATCCTTCACTCAGAAGGTAGACACAACTCCATTCGGGACTGTAATTGAAAATTTCTATATGACTGACGCCATAACCAG : 166 
G: AGACCATCCTTCACTCAGAAGGTAGACACAACTCCATTCGGGACTGTAATTGAAAATTTCTATATGACCGACGCCATAACCAG : 166 

SFP Probe (probe # 2)

S: AGACCAACCTTCTCTGAGAAGGTGGACACCACCCCATTCGGGACTGTAGTTGAGAATTTCTATATGACTGATGCCATTACNAG : 166
              
                                                                                              
                 
I: GGCATCAAAGATAATGGCACAATGCAGTGCTATGCTGTTGAAGAAGTGAAGCATGGGTTTTTTTATTTTTTGGTTTCAATAAT : 249 
C: GGCATCAAAGATAATGGCACAATGCAGTGCTATGCTGTTGAAGAAGTGAAGCATGGGTTTTTTTATTTTTTGGTTTCAATAAT : 249 
G: GGCATCAAAGATAATGGCACAATGCAGTGCTATGCTGTTGAAGAAGTGAAGCATGGGTTTTTTTATTTTTTGGTTTCAATAAT : 249G: GGCATCAAAGATAATGGCACAATGCAGTGCTATGCTGTTGAAGAAGTGAAGCATGGGTTTTTTTATTTTTTGGTTTCAATAAT : 249
S: GGCATCAAAGATAATGGCACAATGCAGTGCCATGCTGTTGA---AGTGAAACATGGATTTTTT-ATTTTTTGGTTTCAATAAT : 245 
                   
                                                                                            

I: GAAGATTCACGTTTATC-TATCCTGGCCGTGCAAGACTTTGCTTGCA-AAAACTTATTGGATGTTGGAAGTA : 319 
C: GAAGATTCACGTTTATC-TATCCTGGCCGTGCAAGACTTTGCTTGCA-AAAACTTATTGGATGTTGGAAGTA : 319
G: GAAGATTC-CGTTTATC-TATCCTGGCCGTGCAAGACTTTGCTTGCA-AAAACTTATTGGATGTTGGAAGTA : 318 
S: GAAGATTCACGTTTTTCCTTTCCTGGCCATGCAAGACTTTGCTTGCCCAAAACTTATTGGATGTTTGAAGTA : 317 
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Cross-species platform for orphan crops/organisms
Recently a number of interspecies comparisons of gene
expression have been carried out including human versus
monkeys [30,31], between rodents [32], human versus
mouse [33], within Xenopus [34] and within Drosophila
[35]. Cross-species analysis of gene expression in non-
model mammals was reported by Nieto-Díaz et al. [36].
The reproducibility of probe data obtained from hybridiz-
ing deer, Old-World primates, and human RNA samples
to the Affymetrix human GeneChip® U133 Plus 2.0 was
compared. Cross-species hybridization affected neither

the distribution of the hybridization reproducibility
among different categories nor the reproducibility values
of the individual probes. Studies such as these encouraged
us to extend the cross-species concept to SFP detection for
cowpea using the readily available Affymetrix soybean
genome array.

In the SFP validation process we identified polymorphic
sites including SNPs and INDELs in sequences neighbour-
ing the SFP probe positions. Such polymorphisms, which
generally represent haplotypes, also can be used for map-

Alignments of validated SFPsFigure 5
Alignments of validated SFPs. Grey background indicates SNP and black background indicates INDEL. I, IT-93K-503-1; C, 
CB46; G, methyl filtered cowpea sequence; S, target sequence from soybean SIF. The target SFP probe number is given in 
parenthesis.

Gma.7528.1.S1_s_at
(Probe 6) 

I TTTCGTATCT--CATGGTGTAAAATGC
C TTTCATATCCTCCATGGTGTAAAATGC
G TTTCATATCT--CATGGTGTAAAATGC 
S TTTCATATCT--CATGGTGTAAAATGC 

Gma.1555.1.S1_a_at
(Probe 6) 

I AAATCAAAAGGGTTCATGTCCTCTG 
C AAATCAAAAGGGTTTATGTCCTCTG 
G AAATCAAAAGGGTTTATGTCCTCTG 
S AAGTCCAAAGGGTTCATGTCCTCAG 

Gma.1164.2.S1_at
(Probe 1) 

I AGTCCGGGAACTATCATGGCTGCAG 
C AGTCCGGGAACTATCGTGGCTGCAG 
G AGTCCGGGAACTATCATGGCTGCAG 
S AGTCCGGGAACTATCATGGCTGCAG 

Gma.1555.1.S1_a_at
(Probe 7) 

I AGGGTTCATGTCCTCTGATGCAGAA 
C AGGGTTTATGTCCTCTGATGCAGAA 
G AGGGTTTATGTCCTCTGATGCAGAA 
S AGGGTTCATGTCCTCAGATGCAGAA 

Gma.1863.1.S1_at
(Probe 2) 

I TGTAGCCCCAAACCTAGTGAACGTG 
C TGTAGCCCCAAACCTTGTGAACGTG 
G TGTAGCCCCAAACCTAGTGAACGTG 
S TGTAGCCCCAAACCTTGTGAACATG 

GmaAffx.93250.1.S1_s_at
(Probe 6) 

I CTGGTGAAACAGGATCAAGAATAGGG
C CTG-TGAAACAGGATCAAGAATAGGG
G CTG-TGAAACAGGATCAAGAATAGGG 
S AT-AGGGCACAGGATCAAGAATAGGG

GmaAffx.86591.1.S1_at
(Probe 8) 

I TACTGATTGCTTTGAAACACCTAGG 
C TACTGATTGCTTTGAAACGCCTAGG 
G TACTGATTGCTTTGAAACGCCTAGG 
S TACTGATTGCTTTGAAACACCGAGG 

GmaAffx.93250.1.S1_s_at
(Probe 7) 

I GTTGAGCTGCTACAGAAGTTTGCGC 
C GTTGAGCTCCTACAGAAGTTTGCGC 
G GTTGAGCTGCTACAGAAGTTTGCGC 
S GTTGAGCTGCTACAGAAGTTTGCAC

Gma.4431.1.S1_at
(Probe 6) 

I GCCCTTTTTAAAGATCTTGTTGATT 
C GCCCTTTTCAAAGATCTTGTTGATT 
G GCCCTTTTCAAAGATCTTGTTGATT 
S GCCCTTTTCAAGGATCTTGTTGATT 

GmaAffx.69322.1.S1_at
(Probe 3) 

I GCTTCATAGTGTTCTTTGGCTCCAT 
C GCTTCATATTGTTCTTTGGCTCCAT 
G GCTTCATAGTGTTCTTTGGCTCCAT 
S GCTTCATATTGTTCTTTGGTTCCAT

Gma.8053.1.S1_at
(Probe 3) 

I TTGATCAAGAAATTTGCTCCAC-AGC
C TTGATCAAGAAATTTGCTCCACCAGC
G TTGATCAAGAAATTTGCTCCAC-AGC 
S TTGACCAAGACATTTGCTCCAC-AGC

GmaAffx.28120.1.s1_at
(Probe 4) 

I AGCTTTGGGACAGTGGTGACGCCAC 
C AGCTTCGGGACAGTGGTGACACCAC 
G AGCTTTGGGACAGTGGTGACGCCAC 
S AGCTTTGGGACAGTGGTGACCCCAC 

GmaAffx.62051.1.S1_at
(Probe 4) 

I GCTTGTGTTGGATCTCAGTTGCAGA 
C GCTTGTATTGGATCTCAGTTGCAGA 
G GCTTGTGTTGGATCTCAGTTGTAGA 
S GCTTGTGTTGGATCTCAGTTGCAGA 

GmaAffx.70836.1.S1_at
(Probe 2) 

I GGATTTGCTGTTGCTCATATTTTAC 
C GGATTTGGTGTTGCTCATATTTTAC 
G GGATTTGGTGTTGCTCATATTTTAC 
S GGATTTGGTGTTGCTCATATTTTAC

GmaAffx.58155.S1_at
(Probe 3) 

I GATATTCATCAGAAGTTCGTGCGGA 
C GATATTCATCAGAAGTTCGTCCGGA 
G GATATTCATCAGAAGTTCGTGCGGA 
S GATATTCATCAGAAGTTCGTGCGGA 

Gma.1449.1.S1_s_at
(Probe 3) 

I GGCCC-TGTTGTTGCCATGATTTGGG
C GGCCCCTGTCGTTGCCATGATTTGGG
G GGCCC-TGTTGTTGCCATGATTTGGG 
S GGCCC-TGTTGTTGCCATGATCTGGG 

GmaAffx.58155.S1_at
(Probe 4) 

I AAGTTCGTGCGGACTTACGGACGAG 
C AAGTTCGTCCGGACTTACGGACGAG 
G AAGTTCGTGCGGACTTACGGACGAG 
S AAGTTCGTGCGGACTTACGGACGCG 

Gma.13293.1.S1_at
(Probe 1) 

I AAGGTGCGTTCTCGATCTGGTATGC 
C AAGGTGCGTTCTCCATCTGGTATGC 
G AAGGTGCGTTCTCGATCTGGTATGC 
S AAGGTGCGTTCTCCATTTGGTATGC 

Gma.5674.1.S1_a_at
(Probe 8) 

I GCCACCAGATGCAGACTTTGTCCGT 
C GCCACCAGATGCTGACTTTGTCCGT 
G GCCACCAGATGCTGACTTTGTCCGT 
S GCCACCAGATGCAGACTTTGTTCGT 

GmaAffx.14067.1.S1_at
(Probe 8) 

I AACCTCGCTGGTAGCAACAGGGTCA 
C AACCTGGCTGGTAGCAACAGGGTCA 
G AACCTCGCTGGTAGCAACAGGGTCA 
S AATCTGGCTGGTAGCAACAGGGTCA 
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ping and therefore are useful by-products of genomic
amplicon sequencing for SFP validation. As shown in Fig-
ure 6, there are even instances of amplicon sequence pol-
ymorphisms when no polymorphism is detected in an
SFP position. In general cowpea seems to have abundant
genetic polymorphism.

Cost of array-based genotyping
The costs of marker development and application are
important to consider. At our cost of $600 per soybean
genome array for purchase, labelling, hybridization and
data collection, the array-related costs of genotyping 100
RILs from two cowpea genotypes using one array per RIL
would be $60,000 USD. If this would yield 1000 mapped
SFP markers, then this would amount to $60 USD per
mapped marker. Depending on the circumstances, this
may or may not be attractive relative to other marker
options, and array costs may vary at different locations.
Nevertheless, $60 USD per mapped SFP in a 100-RIL pop-
ulation may be useful as an approximate point of refer-
ence. Alternatively, using RPP one could readily generate
a short list of SFP-bearing probe sets using datasets
derived just from parental genotypes and then develop
smaller, less expensive arrays containing only the probe

sets that contain SFPs, reducing the cost per mapped SFP
accordingly.

Another possible application of cross-species SFP analysis
would be simply to compare any two genotypes within a
species in order to focus amplicon sequence-based marker
development on a set of target sequences that have a high
chance of revealing a polymorphism. A modest expendi-
ture to produce two datasets from each genotype of inter-
est could provide a sizeable cost savings in materials and
labour by increasing the success rate of amplicon sequenc-
ing in search of polymorphisms.

Conclusion
We conclude that the Affymetrix soybean genome array is
a satisfactory platform for identification of SFPs in cow-
pea. This study demonstrated an efficient way to generate
genetic SFP markers for orphan crops by using the two
parents of a RIL population segregating for several impor-
tant agronomic traits. SFPs between these two genotypes
can be used for high density mapping and those which are
tightly linked to phenotypes such as drought or insect tol-
erance could be used for marker-assisted breeding.

Useful byproducts of genomic amplicon sequencingFigure 6
Useful byproducts of genomic amplicon sequencing. Residues highlighted in grey indicate polymorphism between two 
cowpea genotypes though no polymorphism was detected in the SFP probe region detected by RPP (underlined). I, IT93K-503-
1; C, CB46; G, cowpea methyl filtered sequence; S, target sequence from soybean SIF.

I: GTTCACGA-TGCATTGCCATTAGAAATCAAGATATTGGAATTGGACTTTTCAATCGATTGAAAACCTTTCAAACACAACCA :  80 
C: GTTCACGAATGCATTGCCATTAGAAATCAAGATATTGGAATTGGACTTTTCAATCGATTGAAAACCTTTCAAACACAACCA :  81 
G: GTTCACGA-TGCATTGCCATTAGAAATCAAGATATTGGAATTGGACTTTTCAATCGATTGAAAACCTTTCAAACACAACCA : 80G: GTTCACGA TGCATTGCCATTAGAAATCAAGATATTGGAATTGGACTTTTCAATCGATTGAAAACCTTTCAAACACAACCA : 80
S: GTTCACGA-TGCATTGCCGTTAGAAATCAAGATATTGGAATTGGACTTATCAATCGATTTAAAACCCTTCAAACCCAACCA :  80 
              
                                                                                           
I: ATATCTATACGAACTCCTTTTACCTGTAGGAATACATCTTGGATCTGTCGATTGTGTTATGGTCAAAGTCCTACTCAAGGT : 161 
C: ATATCTATACGAACTCCTTTTACCTGTAGGAATACATCTTGGATCTGTCGATTGTGTTATGGTCAAAGTCCTACTCAAGGT : 162C: ATATCTATACGAACTCCTTTTACCTGTAGGAATACATCTTGGATCTGTCGATTGTGTTATGGTCAAAGTCCTACTCAAGGT : 162
G: ATATCTATACGAACTCCTTTTACCTGTAGGAATACATCTTGGATCTGTCGATTGTGTTATGGTCAAAGTCCTACTCAAGGT : 161 
S: ATATCTATCCGAACTCCCTTTACCTGTAGGAATACATCTTGGATCTGTNNNTTGTGTTATGGCCAAAGTCCTACTCATGGT : 161 
                    
                                                                                           
I: CACTTGGTGGAATTAGGAGAAGCTGTAGGTATTATTGCGGGCCAATCCATTGGAGAACC GGGCACTCAATTAACATTAAG : 241

SFP Probe
I: CACTTGGTGGAATTAGGAGAAGCTGTAGGTATTATTGCGGGCCAATCCATTGGAGAACC-GGGCACTCAATTAACATTAAG : 241
C: CACTTGGTGGAATTAGGAGAAGCTGTAGGTATTATTGCGGGCCAATCCATTGGAGAACCCGGGCACTCAATTAACATTAAG : 243 
G: CACTTGGTGGAATTAGGAGAAGCTGTAGGTATTATTGCGGGCCAATCCATTGGAGAACC-GGGCACTCAATTAACATTAAG : 241 
S: CACTTGGTGGAATTAGGAGAAGCTGTAGGTATTATTGCGGGCCAATCCATTGGAGAACC-GGGCACTCAACTAACATTAAG : 241 
                                                                                           

I: AACTTTTCATACTGGCGGAGTATTCACAGGGGGGACTGCCGAATCAGGTGCGAGCACCTTATAATGGAAAAATTAAATTCA : 322 
C: AACTTTTCATACTGGCGGAGTATTCACAGGGGGGACTGCCGAATCAGGTGCGAGCACCTTATAATGGAAAAATTAAATTCA : 324 
G: AACTTTTCATACTGGCGGAGTATTCACAGGGGGGACTGCCGAA-CAGGTGCGAGCACCTTATAATGGAAAAATTAAATTCA : 321 
S: AACTTTTCATACTGGCGGAGTCTTCACTGGAGGTACTGCAGAA-CAGGTGCGAGCACCTTATAATGGAAAAATTCAATTCA : 321 
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Methods
Plant materials
The genotypes used in this study were California Blackeye
No. 46 (CB46) and IT93K-503-1. CB46 was developed at
the University of California, Davis, released in 1989 [37]
and is currently the most widely grown blackeye-type
cowpea cultivar in the United States. IT93K-503-1 is a
breeding line developed by the International Institute of
Tropical Agriculture (IITA) in Ibadan, Nigeria to produce
high grain yield in the savanna agro-ecological zone of
West Africa. The parental genotypes are inbred pure lines
and differ in a number of important agronomic traits
including grain size, photoperiod sensitivity, seedling
drought tolerance, and resistance to Fusarium wilt race 4
and brown blotch fungal diseases. In order to determine
the inheritance of these traits and to develop nearby mark-
ers, a RIL population with 135 lines was created.

Soybean genome array
Phylogenetic relationships based on the conserved
sequences within Papilionoideae legumes imply that
Vigna (cowpea) is closely related to soybean [38]. Since a
cowpea genome array was not available, a soybean
genome array was used to identify SFPs in cowpea. The
soybean genome array contains 37,500 probe sets derived
from soybean (Glycine max L.) unigenes. This represents
61% of the total probe sets on the chip, with the remain-
der targeting two pathogens important for soybean
research, of which 15,800 (26%) probe sets target Phytoph-
thora sojae (a water mold) and 7,500 (12%) probe sets tar-
get Heterodera glycines (soybean cyst nematode). This array
uses probe sets composed of 11 probe pairs to measure
the expression of each gene. Each probe pair consists of a
perfect match (PM) probe and a mismatch probe.

RNA purification
Seeds were germinated in two sets of pots and grown in
controlled glasshouse conditions during spring 2005
under natural photoperiod. The temperature was main-
tained at day/night cycle of 35/18°C. The growing axillary
buds were harvested 14 days after planting (DAP) from
one set of pots to provide tissues for control samples
(flash frozen and stored at -80°C). Plants in the second set
of pots were exposed to drought stress induced by with-
holding water after germination. The growing axillary
buds were harvested from drought stressed seedlings at 14
DAP (flash frozen and stored at -80°C). With two geno-
types, two treatments and two replicates, there were a total
of 8 samples. Total RNA was isolated using TRIzol (Gibco
BRL Life Technologies, Rockville, MD) reagent. RNA was
further purified using an RNeasy spin column (Qiagen,
Chatsworth, CA) and an on-column DNase treatment.
RNA integrity was assessed prior to target preparation
using RNA Lab-On-A-Chip (Caliper Technologies Corp.,

Mountain View, CA) evaluated on an Agilent Bioanalyzer
2100 (Agilent Technologies, Palo Alto, CA).

Labelling and hybridization of cowpea RNA on soybean 
genome array
Cowpea RNA samples were used to make biotin tagged
cRNAs. These were hybridized to an Affymetrix soybean
genome array as recommended by Affymetrix (Affymetrix
GeneChip Expression Analysis Technical Manual; Affyme-
trix Inc., Santa Clara, CA) at the Institute for Integrative
Genome Biology Microarray Facility at the University of
California, Riverside. The hybridization data were
scanned for visible defects and then extracted using
default settings and tabulated as CEL files using Affyme-
trix GeneChip Operating Software (GCOS 1.2). A global
scaling factor of 500, a normalization value of 1, and
default parameter settings were used for the soybean
genome array. The detection calls (present, absent, or
marginal) for the probe sets were made by GCOS as fol-
lows (abridged from the Affymetrix GeneChip Expression
Analysis Technical Manual; Affymetrix Inc., Santa Clara,
CA). The detection algorithm uses probe pair intensities
to generate a detection p-value and assign a "present",
"marginal", or "absent" call. Each probe pair in a probe set
has a potential vote in determining whether the measured
transcript is or is not "present". The vote is described by
the discrimination score (R). R is calculated for each probe
pair and compared to a predefined threshold, Tau. Probe
pairs with R higher than Tau vote "present" and the voting
result is summarized as a p-value. The greater the number
of discrimination scores (R) that are above Tau, the
smaller the p-value and the more likely the given tran-
script is truly present in the sample.

Method for identifying SFPs
Expression data were generated by hybridizing cowpea
cRNA to the soybean genome array. A statistical method
called robustified projection pursuit (RPP) was used for
SFP analysis [20]. Only the values from the PM probes
were utilized. The use of RNA as a surrogate for genomic
DNA eliminated interference from highly repetitive DNA
as a technical impediment to SFP detection. An important
aspect of the RPP method is that it first utilizes a probe set
level analysis to identify SFP-containing probe sets and
then chooses individual probes from within each SFP-
containing probe set. The net result is the identification of
probes that directly overlay polymorphic sequences.

Separate comparisons were made between two genotypes
(with two replicates each) for unstressed and drought
stressed treatments, resulting in two SFP lists. In the con-
text of SFPs, there is no necessity to have separate stress
and control lists; in fact it would be simpler and less costly
to have only one SFP list from highly complex RNA made
by blending stressed and unstressed RNA, as in Cui et al.
Page 9 of 12
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[20]. In our case, two separate lists were available as a con-
sequence of another study not described here which com-
pared gene expression patterns in stressed and control
plants (data not shown). At 15% outlying score cut-off, we
detected 488 SFP probes in stressed and 661 SFP probes in
unstressed treatments. The union of these two lists con-
tained 1058 SFP probes and the intersection contained
91. A total of 37 primer pairs targeting 37 putative SFP
probe sets were initially tested, of which 25 yielded single
amplicons of the expected sizes from both parents. These
25 amplicons targeted 14 probe sets selected from the
intersection of the two SFP probe set lists and 11 from the
remaining SFP probe sets. As shown in Additional file 1, 9
of the 14 SFP probe sets (64%) from the intersection list
were validated at the DNA sequence level and 8 of the
other 11 (73%) were validated.

Genomic DNA isolation
Young leaves from one-week-old cowpea seedlings were
ground with liquid nitrogen. Approximately ~0.1 g of
ground tissue was used for genomic DNA isolation using
a DNeasy Plant Mini Kit (Qiagen, USA) according to the
manufacturer's recommendations. Eluted genomic DNA
was examined by UV absorbance and with 1.0% agarose
gel electrophoresis for quality and quantity evaluation.

Primer design and PCR
The soybean genome array unigene sequences were used
to query (using blastx) Arabidopsis translated gene models
(version 7.0) from The Arabidopsis Information Resource
(TAIR). Annotations for the Affymetrix soybean probe sets
were compiled into a browser called HarvEST:SoyChip
which can be accessed online or downloaded for Win-
dows installation [39]. Cowpea ESTs available from Gen-
Bank were assembled using the CAP3 program [40] and
compiled into a browser called HarvEST:Cowpea which
can be accessed online or downloaded for Windows
installation [41]. Cowpea methyl-filtered sequences were
obtained from Dr. Michael Timko, Department of Biol-
ogy, University of Virginia [42]. The soybean unigenes
corresponding to each SFP probe set were used to query
cowpea unigenes in HarvEST:Cowpea and cowpea
methyl-filtered sequences. The cowpea sequences corre-
sponding to SFPs were then used for PCR primer design in
the flanking regions of SFP position. Primers were
designed using Primer3 web version software [43]. The
strategy used for primer design is illustrated in Additional
file 2. All primer pairs were designed with Tm~55°C.

PCR was performed in 20 μl reactions containing 20~25
ng of genomic DNA, 0.1 μM of primers, 0.2 mM dNTPs,
and 1 unit of Taq DNA polymerase (New England Biolabs,
USA). The reaction included an initial 5 min denaturation
at 95°C, followed by 35 cycles of PCR (94°C, 30 sec;
55°C, 45 sec; 72°C, 1 min), and a final 5 min extension

at 72°C. Aliquots (4 μl) of the PCR products were loaded
and separated on 1.2% agarose gel by electrophoresis. A
higher Tm was used when non-specific bands were ampli-
fied. PCR products were purified using QIAquick PCR
purification Kit (Qiagen, USA) after confirming their uni-
formity on agarose gels.

DNA sequencing and analysis
DNA sequencing was performed using the dideoxynucle-
otide chain termination method [44]. Both strands of the
amplified PCR products were sequenced with an ABI-
PRISM 3730xl Autosequencer (Aplied Biosystems, USA)
at the Core Instrumentation Facility of the UC Riverside
Institute for Integrative Genome Biology. The forward and
reverse sequence reads for each genotype for a particular
primer pair were assembled using Contig Express (Invitro-
gen, USA) and the consensus sequence was used for align-
ment. These sequences were then compared with each
soybean Sequence Information File (SIF, the target
sequence which extends from the 5' end of the 5'-most
probe to the 3' end of the 3'-most probe) and cowpea
sequence using AlignX (Invitrogen, USA). Comparisons of
nucleotide sequence similarity were displayed using
GeneDoc [45]. Cowpea genomic amplicon sequences
have been deposited into the dbGSS Data Library [Gen-
Bank: ET041523 to ET041556].

Data Availability
All expression data are available through the Gene Expres-
sion Omnibus (GEO) under platform GPL 4592, Series
GSE 10284.
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