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Abstract
Background: Existing algorithms and methods for forming diverse core subsets currently address
either allele representativeness (breeder's preference) or allele richness (taxonomist's preference).
The main objective of this paper is to propose a powerful yet flexible algorithm capable of selecting
core subsets that have high average genetic distance between accessions, or rich genetic diversity
overall, or a combination of both.

Results: We present Core Hunter, an advanced stochastic local search algorithm for selecting
core subsets. Core Hunter is able to find core subsets having more genetic diversity and better
average genetic distance than the current state-of-the-art algorithms for all genetic distance and
diversity measures we evaluated. Furthermore, Core Hunter can attempt to optimize any number
of genetic measures simultaneously, based on the preference of the user. Notably, Core Hunter is
able to select significantly smaller core subsets, which retain all unique alleles from a reference
collection, than state-of-the-art algorithms.

Conclusion: Core Hunter is a highly effective and flexible tool for sampling genetic resources and
establishing core subsets. Our implementation, documentation, and source code for Core Hunter
is available at http://corehunter.org

Background
Genetic resources stored in gene banks are usually sam-
pled with the purpose of evaluating and utilizing them
efficiently, as well as studying phenotypic and genotypic
diversity, identifying duplicate accessions, and forming
core subsets. The aim of the latter activity is to preserve in
the sample as much of the diversity present in the original
collection as possible. Core subset selection can be based

on varying criteria including phenotypic traits or various
forms of molecular marker data including, but not limited
to, single nucleotide polymorphisms (SNP), amplified
fragment length polymorphisms (AFLP), random ampli-
fied polymorphic DNA (RAPD), and simple sequence
repeats (SSR). A simple example considering SNP data is
given in Figure 1. The concept of core collections (or core
subsets) was introduced to increase the efficiency of char-
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acterizing and utilizing the collections stored in gene
banks while preserving the genetic diversity of the collec-
tion [1,2].

In many instances, gene bank curators and genetic
resource conservation managers need to stratify their sam-
pling procedure prior to forming a core subset. The criteria
for stratifying samples may be based on ecogeographical
sub-regions or on genetic considerations such as races
and/or land-races. Standard stratified sampling strategies
seek to maximize the diversity among clusters while min-
imizing the diversity within groups. Hierarchical cluster-
ing algorithms along with statistical models that
maximize the probability of assigning accessions into
each cluster have been used for this purpose [3-7]. Once
clusters are formed, an appropriate allocation method
should be used to determine the number of accessions to
be drawn from each cluster.

Using phenotypic evaluation and characterization data,
the D-method was developed as an allocation criterion for
determining the number of accessions to be drawn from
each cluster [8]. The D allocation method determines that
the size of the sample to be drawn from each cluster
should be proportional to the diversity between acces-
sions within that cluster. The authors showed that the D-
method produced samples with significantly more diver-
sity than other allocation methods. In another study, the
D-method was used, along with other sampling strategies,
for forming core subsets of maize using molecular marker
data [9]. The results showed that the unweighted pair-
group method using arithmetic average clustering
(UPGMA) [10] with the D allocation method produced

core subsets with significantly more diversity than other
methods in terms of genetic distances and diversity indi-
ces. Another study, not using the D-method, showed sim-
ilar results when using deviation sampling with the
unweighted pair-group average method for hierarchical
clustering [11].

Although the stratified sampling strategy using the D-
method proved to be efficient for forming diverse core
subsets, these can be formed by a non stratified procedure
in which accessions are directly selected from the entire
collection by maximizing an objective function. In [12],
Schoen and Brown addressed the issue of how to use
genetic markers to sample collections of wild related spe-
cies while maximizing allelic richness. They proposed the
M (maximization) strategy that maximizes the number of
observed alleles at each marker locus. A study using com-
puter simulation for comparing the retention of neutral
alleles when forming core collections using non marker-
based random sampling and stratified random sampling
strategies versus the M strategy using genetic markers,
found the M-strategy very effective for retaining wide-
spread and low frequency alleles [13].

MSTRAT, a local search algorithm based on the M-strat-
egy, has been proposed [14]. As described by the authors,
MSTRAT uses a maximum iterative improvement search
and consists of (1) forming a subset of n accessions cho-
sen at random from the N accessions of the whole collec-
tion, (2) all possible subsets of size n - 1 are tested for
allele diversity and the subset showing the highest level of
richness is retained, and (3) the accession bringing the
greatest increment in the diversity criterion among the
remnant accessions is added, forming an new subset of
size n. Steps (2) and (3) are repeated until the richness of
the subset is no longer improved. The diversity of the core
subsets formed is measured using a score of allele rich-
ness.

The objectives of MSTRAT differ from those of the D-
method. It has been suggested that core subsets can be
formed that either include rare and localized alleles,
which will maximize the total allelic diversity in the core
(as favored by taxonomists and geneticists), or can be con-
structed by including widely adapted accessions that max-
imize the representativeness of the genetic diversity in the
core (which is the breeder's preference) [15]. The objective
of the D-method is to select the most diverse accessions in
terms of genetic distances among genotypes, whereas the
M-strategy emphasizes selecting accessions with the most
diverse alleles. This was confirmed in studies, using
molecular marker data, which found that MSTRAT is very
effective for retaining widespread and low frequency alle-
les and thus for forming core subsets with high allele rich-
ness and a low proportion of non-informative alleles

Example of core subset selectionFigure 1
Example of core subset selection. A collection of six 
samples with data collected for three markers, each having 
two possible alleles, is shown. Each sample shows the pres-
ence for one of two possible alleles at each marker position. 
The two rows bordered in red are a possible core subset 
which contain all unique alleles found in the original collec-
tion.
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[9,14]. Furthermore, it was found that MSTRAT formed
core subsets with more allelic diversity than the D-method
in most populations [9]. In general, the D-method formed
core subsets having higher average genetic distances
between genotypes than MSTRAT.

Recently, Power Core, a new algorithm also based on the
M-strategy was proposed [16]. However, Power Core's
algorithm differs significantly from existing ones. The
authors proposed a deterministic heuristic search, based
on the concepts of A* search [17] – an exhaustive graph
searching algorithm, guaranteed to find an optimal solu-
tion. As suggested by the authors, it would be infeasible to
run A* search on even moderately sized problem
instances (collections), due to its exhaustive nature.
Therefore, the deterministic heuristic they propose is nec-
essary to ensure Power Core terminates in a reasonable
amount of time. Although their algorithm is not guaran-
teed to find optimal solutions, it found core subsets that
were superior to those found by MSTRAT, as defined by
their proposed evaluation criteria of variable coverage: the
ratio of unique values present in the core subset versus
those found in the entire collection, averaged over all var-
iables [16].

Other sampling procedures have been proposed such as
genetic distance sampling [18], which finds core subsets
guaranteeing no two accessions are within a defined dis-
tance of each other. In this way, the user need not specify
the core size; however, the choice of an appropriate value
for the distance parameter can be as problematic as the
selection of the core size itself. Another iterative proce-
dure, least distance stepwise sampling (LDSS), was pro-
posed which uses the distances and groupings from
hierarchical clustering to determine which accessions to
eliminate, and which to add in each step of the procedure
until the desired core size has been attained [19]. While
both methods employ the use of genetic distances during
their heuristic sampling, neither attempts to directly opti-
mize them.

A first objective of this paper is to demonstrate the effec-
tiveness of formally treating core subset selection as an
optimization problem. This entails first defining which
characteristics of the core subset should be optimized.
These may include the average genetic distance between
accessions in the core subset, and/or its redundancy of
particular alleles, amongst other criteria. Even constraints
on the core subset such as ensuring it does not contain
two accessions within a threshold distance of each other,
as guaranteed by genetic distance sampling, can be treated
in a broader view as an optimization problem. We will
show that once the criteria for the desired core subset is
well defined, the selection can be effectively and effi-
ciently handled by sophisticated search algorithms capa-

ble of finding as good or better core subsets when
compared with existing methods.

Despite incremental improvements to the challenge of
selecting the best core subsets, most existing algorithms
and methods currently address either allele representa-
tiveness (breeder's concept) or allele richness (taxono-
mist's perspective). A second objective of this paper is to
propose an algorithm capable of selecting core subsets
having high average genetic distance between accessions
or a rich genetic diversity overall, or a core subset that con-
siders both criteria. A method for combining discrete
molecular marker data and continuous genetic data for
core subset selection has been previously proposed [20].
We generalize this notion in order to consider any
number of optimization criteria simultaneously. In this
paper we limit our focus to discrete molecular marker
data, although the same approach could be extended to
consider continuous genetic data.

We present Core Hunter, an algorithm based on an
advanced stochastic local search method. Results from the
diversity of the core subsets selected by Core Hunter are
compared with the diversity of the core subsets formed
using the current state-of-the-art methods with an availa-
ble implementation: D-Method [8], MSTRAT [14], and
Power Core [16]. We demonstrate that Core Hunter finds
as good or better core subsets than other methods for all
genetic measures evaluated when attempting to optimize
a single genetic measure. Furthermore, by attempting
simultaneous optimization of multiple genetic measures,
Core Hunter often finds core subsets that simultaneously
have higher average genetic distance and genetic diversity
values than any reported by the other algorithms evalu-
ated. We also demonstrate that Core Hunter is able to find
smaller core subsets which maintain all unique alleles
found in a reference collection, than all other methods
evaluated.

Methods
To simplify the discussion that follows, we first formalize
the core subset selection problem.

The core subset selection problem
Let S denote the original collection of resources and γ, 0 ≤
γ ≤ 1, the sampling intensity used to form the core subset.
Furthermore, let C(S) be the set of all possible core subsets
of S of size n, n = γ·|S|. Finally, let F be the objective func-
tion we wish to maximize. F may be a genetic diversity
measure such as Shannon's diversity index, an average
genetic distance within a population, possibly measured
by Modified Rogers distance, or some multi-objective
function which we will detail next. Formally, we wish to
select an optimal core subset c*, c* ∈ C(S), such that F(c*)
= max{F(c')|c' ∈ C(S)}.
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The proposed pseudo-index for integrating genetic 
distances and diversity indices

An advantage of using search algorithms for core subset
selection is the potential to select core subsets that attempt
to optimize more than one criterion. As an example and
given the above definition of core subset selection, let

F(c') = α·Fdistance(c') + (1 - α)Fdiversity (c'), where α, 0 ≤ α ≤
1, is a weight associated with genetic distance. In this for-

mulation, if α = 1.0, then a core subset would be selected
which attempts to maximize the average genetic distance,
using Modified Roger's distance for example, while
genetic diversity, possibly Shannon's diversity index,
would not be considered. Likewise, one could attempt to

maximize the genetic diversity by setting α = 0.0. How-

ever, for the case of 0 <α < 1, a core subset will be formed
by attempting to maximize both genetic distance and

diversity proportional to the weight assigned to α. This
concept is easily generalized to incorporate any k meas-

ures as shown below, where Fi(c') ≥ 0, 1 ≤ i ≤ k, and

.

Indeed, this is a common approach in multi-objective
optimization referred to as Pareto optimization [21]. We
stress that the pseudo-index does not provide any biolog-
ical insight into the chosen samples; rather, it serves only
as a mean for attempting optimization of more than one
genetic measures simultaneously, based on the weights
assigned to standard measures. Another common
approach in multi-objective optimization is Pareto rank-
ing [22], a technique not explored further here.

The Core Hunter algorithm for the proposed pseudo-index
The Core Hunter algorithm uses an advanced stochastic
local search (SLS) algorithm, replica exchange Monte
Carlo [23-25], to maximize the pseudo-index we propose
above. This search method has been effectively used to
solve high dimensional search problems containing many
local maxima embedded in rugged search terrains in
many areas of study including spin glasses [26,27] and
protein folding [28]. Given the high dimensionality of the
core subset selection problem, and the vast number of
possible core subsets, this was deemed as a necessary alter-
native to the use of simpler search methods, such as itera-
tive improvement (hill climbing), which are more likely
to become trapped in local maxmima due to their greedy
nature. We now provide a brief overview of the algorithm.
The reader is referred to a review of extended ensemble
Monte Carlo algorithms [25] for further details.

For each replica, Monte Carlo search initiates by ran-
domly selecting n accessions from the reference set to
form the initial solution, where n is the number of acces-
sions desired in the core subset. The search proceeds by
perturbing the current solution and exploring the so-
called search neighborhood. In this application, our
search neighborhood consists of all possible subsets that
differ from our current solution, by at most one accession.
Thus, to evaluate a new potential solution found in the
search neighborhood, we perturb the current core subset
by randomly removing an accession and adding a new
accession from the original collection. This is commonly
referred to as a 1-exchange neighborhood. While it is triv-
ial to extend this concept to a δ-exchange neighborhood,
δ > 1, it was deemed unnecessary given our results. Note
that when the core subset need not be of a specific size, it
is possible that a perturbation remove an accession, but
not add another, or vice versa, in order to shrink or grow
the core subset. This is useful, for instance, when attempt-
ing to find the smallest core subset which contains all
unique alleles of a collection. After perturbing a current
solution (core subset) s to form an alternate core subset s',
the so-called Metropolis criterion is used to determine if
the new core subset s' should be accepted. The probability
of accepting s' as the new solution can be expressed as

where ΔF := F(s') - F(s) is the difference in the pseudo-
index score between the new (s') and old (s) solutions
(core subsets), and t denotes the temperature of the rep-
lica.

Intuitively, a replica at a higher temperature is more likely
to accept a bad transition, one where the new core subset
has a worse score than the original. Accepting bad transi-
tions to core subsets with worse scores than a previous
solution allows the search to proceed without being
trapped at a local maximum. This is a fundamental differ-
ence from other search algorithms such as maximum iter-
ative improvement that is implemented in the MSTRAT
program [14]. Conversely, replicas at lower temperatures
are less likely to accept worsening transitions, and there-
fore converge towards a solution.

For the duration of the search, k independent replicas are
maintained, each performing a Monte Carlo search as
described above at, a unique temperature ti, 1 ≤ i ≤ k. Rep-
licas are ordered such that t1 <t2 <...<tk. Neighboring repli-
cas periodically swap their core subsets in order to allow
solutions that have stagnated to break out of local maxi-
mums and to allow promising solutions to converge. The
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probability of swapping the current solutions of replicas i
and i + 1, namely the core subsets si and si+1, can be
expressed as

where ψ is the product of the pseudo-index difference and
inverse temperature difference:

As the probability of accepting an exchange of core subsets
of two replicas drops exponentially as the temperature dif-
ference between them increases, potential replica
exchanges are only considered between neighboring tem-
peratures [28].

Therefore, the search consists of performing a Monte
Carlo search independently for a number of replicas. In
brief, each replica is a potential solution and represents a
core subset. After each Monte Carlo search has progressed
for a fixed number of steps, replica exchanges are consid-
ered, temperatures are possibly swapped, and a Monte
Carlo search begins again for each replica. The best solu-
tion, among all replicas, is tracked during the entire
search. After a fixed runtime, the best solution observed is
reported.

Core Hunter with stratified sampling
As previously stated, it is sometimes necessary to first
stratify samples based on ecogeographical information,
and other criteria, prior to forming core subsets. In these
cases, Core Hunter can be used in a complementary man-
ner with the D-method, or similar allocation methods.
After stratification, the D-method will determine the
number of resources to sample from each cluster, and
Core Hunter can then be run independently on each clus-
ter at the specified sampling intensity.

Genetic distances and diversity indices
To evaluate the quality of core subsets formed by the dif-
ferent algorithms, and as compared with the original col-
lection, similarly to a previous study [9] we use two
genetic distances between genotypes and three diversity
indices that can be incorporated into the pseudo-index we
propose above. Before providing precise definitions of
these measures, we pause to give a brief summary of the
purpose of each measure and some insight into how the
measures differ from one another. For an in depth treat-
ment of appropriate applications of various genetic meas-
ures, and how they relate mathematically, the reader is
referred to a review article by Reif et al. [29] and references

therein, including a review article by Mohammadi and
Prasanna [30].

Genetic distances are a measure defined between two
samples in order to quantify their degree of dissimilarity;
simply put, the larger the value of a genetic distance, the
more genetically different the two samples are. Con-
versely, redundant or highly similar pairs of accessions
can easily be identified within a collection as those with
very low genetic distance between each other. As a genetic
distance measure is defined between a pair of samples,
and not an entire collection, it is customary to report the
average genetic distance between all unique pairs of sam-
ples within a collection. This type of measure is particu-
larly useful for breeders interested in forming core subsets
where each chosen accession is sufficiently distant from
the others. The two genetic distance measures used here
are Modified Rogers (MR) [31] and Cavalli-Sforza and
Edwards (CE) [32]. Both measures compare samples at
the allelic level. Modified Rogers distance is a refinement
of the standard Euclidean distance where each allele is
treated as a separate dimension.

Cavalli-Sforza and Edwards distance is similar to Modi-
fied Rogers distance, however, it assumes a selective drift
model where samples are subject to a low mutation rate
and rapid changes in selective pressure [29]. For this rea-
son, Modified Rogers distance may be a more suitable
measure than Cavalli-Sforza and Edwards distance in
breeding programs where consistent selective pressure is
applied for particular traits. In contrast to genetic distance
measures, genetic diversity measures do not consider pairs
of accessions, rather the allelic composition of the sample
as a whole. Genetic diversity measures are particularly use-
ful for ensuring rare alleles, which may confer disease
resistance or some other desirable property, are included
during core subset formation. For this reason, these meas-
ures are well suited for genetic conservation efforts such as
seed banks. Although, they can be equally valuable in
breeding programs to ensure a large distribution of alleles
is maintained. We consider three genetic diversity indices
in this study. The first, Shannon's diversity index (SH), is
directly related to Shannon's information content meas-
ure [33]. The index is defined in such a way that the largest
value attainable occurs when each allele is present only
once in the entire sample being measured. Generally
speaking, it penalizes redundancy at the allelic level, with
respect to the entire sample. Therefore, Shannon's diver-
sity index is an appropriate measure when forming core
subsets that attempt to retain as many rare alleles as pos-
sible, regardless of their co-location within loci (markers).
The expected proportion of heterozygous loci (HE) [34]
on the other hand, specifically considers diversity within
each loci. Intuitively, since each loci contributes equally to
the overall value of this measure, core subsets selected
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using this measure are less likely to be homozygous for a
number of different loci than core subsets selected with
Shannon's diversity index. The number of effective alleles
(NE), by definition, positively correlates with HE and
measures the number of alleles within a loci and how
evenly alleles are distributed within that loci [34], aver-
aged over all loci in the sample. Thus, both measures are
suitable for selecting core subsets which ensure allelic
diversity within and across loci.

In each evaluation of a sample, we also report two auxil-
iary values: the proportion of non-informative alleles
(PN) (see [9] and references therein) and allele coverage
(CV) [16]. CV is a simple measure which reports the per-
centage of alleles retained in a core subset compared with
the original collection. This measure is particularly suita-
ble in selecting core subsets for the purpose of allele con-
servation in gene banks and seed banks. For instance, due
to time or financial constraints, it may be desirable to
select the smallest core subset possible, which retains all
unique alleles found within a larger collection (CV =
100%). PN is defined to be the opposite of CV. Thus, max-
imizing the one will minimize the other.

We now give the precise definition of these measures
below where we let L be the number of loci (markers), nl

be the number of alleles within the lth loci, and A be the

number of alleles in the collection ( ). Fur-

thermore, let  denote the relative frequency of allele a

over the observed frequency of all A alleles (note 

= 1), let  denote the relative frequency of the ath allele

in the lth loci and let  denote the relative frequency of

allele a within loci l for genotype x.

1. The Modified Rogers distance (MR) between a pair
of genotypes x, y is

.

2. The Cavalli-Sforza and Edwards distance (CE)
between a pair of genotypes x, y is

.

3. The Shannon diversity index (SH) of the entire sam-

ple is .

4. The expected proportion of heterozygous loci per

individual (HE) is .

5. The number of effective alleles (NE) is

.

6. Proportion of non-informative alleles in the core
subset (PN) is an auxiliary variable measuring the pro-
portion of alleles lost in a core subset compared with
the alleles found in the original collection. Specifi-

cally, let  be the set of alleles found in the original

collection and let  be the set of alleles found in the

core subset. Then .

7. Coverage of alleles in the core subset (CV) is an aux-
iliary variable measuring the percentage of alleles from
the collection which are also present in the core sub-
set. Note that CV = (1.0-PN) * 100.

Criteria for the best core subset
The best core subset has the highest average genetic dis-
tance between accessions, the highest allele richness, and
the lowest proportion of non-informative alleles (and
equivalently, the highest allele coverage). These criteria
are in agreement with previous works that suggest core
subsets can be formed with the aim of maximizing the
total diversity through allele richness and/or maximizing
the representativeness of the genetic diversity in the core
subset [9,15].

Data sets
To evaluate the utility of the proposed pseudo-index and
the effectiveness of the Core Hunter algorithm, a number
of experiments were conducted to compare them to exist-
ing strategies. For comparison with MSTRAT and D-
Method, the same three molecular marker data sets from
a previous study were used [9]. A brief description of the
three data sets follows:

• 'bulk data set':

- 275 samples, having 24 markers and 186 total
alleles

- obtained by fingerprinting 275 bulks (popula-
tions represented by two bulks of 15 genotypes
each) of maize landrace populations from the
Americas and Europe, using 24 SSR markers with
at least one SSR per chromosome and a total of
186 alleles [35]

• 'accession data set':

- 521 samples, having 26 markers and 209 total
alleles
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- obtained by fingerprinting 521 maize individuals
from 25 maize populations using 26 SSR markers
with at least one SSR per chromosome and a total
of 209 alleles [36].

• 'populations data set':

- 25 samples, having 26 markers and 209 total alle-
les

- obtained from the 'accession data set' by group-
ing the individuals of each population, and calcu-
lating the allele frequency per population; this
data set had a total of 25 populations and 209 alle-
les [36].

Comparisons with Power Core used the same 'rice SSR'
data set as used in the original study on Power Core [16].
The SSR data set contained values for 1000 individual
accessions at 18 loci.

Implementation and hardware
Core Hunter was implemented in Java (version 1.6.0).
Experiments were run on our reference Pentium IV 2.4
GHz processor machines, with 1GB main memory and
256 Kb of CPU cache, running SUSE Linux version 10.1.

Results and Discussion
In the following section, we compare our proposed algo-
rithm for forming core subsets, Core Hunter, with three
state-of-the-art methods for which implementations are
available: MSTRAT [14], D-Method [8] and Power Core
[16]. Core Hunter is evaluated on the same data sets used
in recent studies of these algorithms. Results for MSTRAT
and D-Method were reported in a previous study [9]
where core subsets were selected using a sampling inten-
sity of 20%, a typical choice suggested in the literature
[37,38]. For all comparisons with these methods, Core
Hunter also used a sampling intensity of 20%. Specifi-
cally, 55 samples were chosen for each core subset of the
bulk data set, 104 samples for the accession data set, and
5 samples for the population data. We note that in general
the choice of sampling intensity, and thus core subset size,
for a particular purpose may be based on many independ-
ent factors. These factors may include criteria such as
diversity, redundancy and possibly financial constraints.

Power Core results were determined by calculating the
seven genetic measures used in this study on the core sub-
set it selected for a rice SSR data set. The core subset
selected by Power Core was previously published, consist-
ing of 87 accessions, and made available online [16].
When comparing with Power Core, all core subsets
selected by Core Hunter also contain 87 accessions, unless
otherwise noted. In that study, the authors of Power Core

demonstrated the software is capable of selecting smaller
core subsets that maintained all unique alleles from the
reference collection than other algorithms they compared
against. We repeat this experiment with our Core Hunter
algorithm.

We show how core subsets can be selected which attempt
to optimize multiple genetic measures simultaneously,
respective of an assigned weight, using the pseudo-index
proposed above. We also explore how core subsets differ
under various sampling intensities. As Core Hunter is a
randomized algorithm, we also report on the solution
quality variance arising from repeated independent simu-
lations.

Optimizing a single distance or diversity measure
For all data sets, Core Hunter was run with the objective
of optimizing each genetic measure independently (Core
Hunter (single)). Results reported for each measure are
independent of results reported for all other measures. For
each genetic measure being optimized for a given data set,
20 independent runs were performed with a maximum
search runtime of 5 CPU minutes.

Table 1 compares Core Hunter with MSTRAT and D-
Method and lists the mean value of these independents
runs for each combination of data set and genetic measure
along with previously reported results for MSTRAT and D-
Method [9]. When attempting to minimize the propor-
tion of non-informative alleles (PN) and when attempt-
ing to maximize the coverage (CV) for the accession data
set, Core Hunter matches the performance of MSTRAT
with both algorithms finding an optimal solution (0.0
and 100.0, respectively). In every other instance, for every
measure, Core Hunter outperforms both MSTRAT and D-
Method for the measure being optimized, often by an
important margin. Notably, Core Hunter finds core sub-
sets that, on average, improve upon the number of effec-
tive alleles for the accession data set by 17.4%, and the
average Modified Roger's distance by 17.2% and 13.7%
for the population and bulk data sets, respectively. The
lowest increases were observed for the Shannon diversity
index on each data set, ranging from 0.2% to 2.0%
improvement over MSTRAT. Overall, Core Hunter is able
to select better cores than MSTRAT and D-Method, with
respect to the single genetic measures being optimized.

Table 2 compares Core Hunter's performance with Power
Core. Both algorithms select core subsets having an opti-
mal solution for proportion of non-informative alleles
(0.0) and coverage (100.0). For every other measure, Core
Hunter outperforms Power Core with respect to the meas-
ure being optimized. The least improvement is observed
for Shannon's diversity index, with Core Hunter improv-
ing upon Power Core by 2%. Core Hunter finds core sub-
Page 7 of 13
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sets having values of Modified Roger's and Cavalli-Sforza
and Edwards' distance that are 5% better than those of
Power Core. The most important gain is for the number of
effective alleles, with Core Hunter improving upon Power
Core by 21%.

While Core Hunter is capable of selecting core subsets
which meet or exceed the quality of those chosen by exist-
ing software for a particular genetic measure, an impor-
tant question is how the values of the other measures,
which are not considered during optimization, were
affected. These values are reported in Table S1 and Table
S2 [see Additional file 1] and we summarize the findings

here. The following general trends were noticed. When
Core Hunter only attempts to optimize the auxiliary
measures CV and PN, core subsets were selected that in
general had worse values than at least one of the other
algorithms for every other measure. Conversely, Core
Hunter consistently reported the worse score for CV and
PN measures when attempting to optimize any other
measure. This suggests selecting core subsets which
attempt to minimize allele redundancy does not necessar-
ily result in core subsets which have high average genetic
distance or diversity, at least in the case of core subsets
found by Core Hunter.

Table 1: Comparison of core subsets selected by MSTRAT, D-Method and Core Hunter

Strategy MR CE SH HE NE PN CV

Bulk data set

Core Hunter (single)† 0.572 0.641 4.531 0.667 3.446 0.000 100.000
Core Hunter (multi)‡ 0.506 0.598 4.513 0.662 3.403 0.015 98.500
MSTRAT 0.477 0.571 4.493 0.649 3.217 0.021 97.900
D-Method§ 0.503 0.578 4.411 0.626 2.980 0.066 93.400
COLLECTION 0.440 0.521 4.399 0.620 2.937 0.000 100.000

Accession data set

Core Hunter (single)† 0.694 0.752 4.670 0.676 3.501 0.000 100.000
Core Hunter (multi)‡ 0.659 0.733 4.613 0.650 3.281 0.084 91.600
MSTRAT 0.647 0.718 4.579 0.624 2.982 0.000 100.000
D-Method§ 0.653 0.719 4.525 0.619 2.963 0.164 83.600
COLLECTION 0.630 0.696 4.467 0.591 2.742 0.000 100.000

Population data set

Core Hunter (single)† 0.442 0.540 4.503 0.619 2.997 0.177 82.300
Core Hunter (multi)‡ 0.396 0.508 4.482 0.609 2.969 0.225 77.500
MSTRAT 0.357 0.465 4.450 0.593 2.763 0.183 81.700
D-Method§ 0.377 0.485 4.409 0.579 2.702 0.264 73.600
COLLECTION 0.357 0.455 4.466 0.592 2.749 0.000 100.000

†each selection criteria was attempted to be optimized independently by performing 20 runs with 100% weight given to the respective selection 
criteria during each run. Results reported for each measure are independent of results reported for all other measures.
‡20 independent runs were performed with equal weight given to each of the seven measures in an attempt to maximize (minimize) all measures 
simultaneously.
§for each measure, results are shown for the best performing strategy as reported in [9].

Table 2: Comparison of core subsets selected by Power Core and Core Hunter

Strategy MR CE SH HE NE PN CV

Core Hunter (single)† 0.926 0.926 5.259 0.873 9.431 0.000 100.000
Core Hunter (multi)‡ 0.884 0.884 5.157 0.841 7.928 0.000 100.000
Power Core 0.880 0.880 5.131 0.834 7.444 0.000 100.000
COLLECTION 0.733 0.733 4.397 0.659 3.700 0.000 100.000

†each selection criteria was attempted to be optimized, independently, by performing 20 runs with 100% weight given to the respective selection 
criteria during each run. Results reported for each measure are independent of results reported for all other measures.
‡20 independent runs were performed with equal weight given to each of the seven measures in an attempt to maximize (minimize) all measures 
simultaneously.
Page 8 of 13
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Another overall trend that was observed was an apparent
trade-off between optimizing genetic distance measures
and optimizing genetic diversity measures. This observa-
tion was made in a previous study comparing D-Method
and MSTRAT [9] and the results for Core Hunter are no
exception to this trend. When Core Hunter optimizes a
genetic diversity measure, it generally finds core subsets
having worse values for distance measures and is outper-
formed with respect to other software. Likewise, when
optimizing a genetic distance, Core Hunter often finds
core subsets with worse genetic diversity. There are a few
interesting exceptions. For the Accession data set (the larg-
est Maize data set), Core Hunter consistently finds better
core subsets with respect to all distance and diversity
measures, regardless of which of those measures is being
optimized, with only one exception: MSTRAT finds a core
subset with a better SH value when Core Hunter is opti-
mizing the MR measure. Also of note is that when Core
Hunter is optimizing a genetic distance for the rice data
set, it finds core subsets with both good average distance
and high diversity, compared with other software.

These results motivate further study in a number of inter-
esting directions. In the next sections, we study these
trade-offs in more detail to determine if Core Hunter can
be used to find core subsets having both high genetic
diversity and high average genetic distance. We also con-
sider the case for trying to find core subsets which have
desirable properties for a number of measures, simultane-
ously.

Simultaneous distance and diversity optimization
To test how effectively Core Hunter can attempt to opti-
mize genetic distance and genetic diversity measures
simultaneously, we conducted the following experiments.
For each data set, Core Hunter was run with the objective

of optimizing both a genetic distance and a genetic diver-
sity index simultaneously, with respect to a weight
assigned to each measure proportional to the pseudo-
index parameter α. One hundred uniform values were
tested in the range [0,1]. For each value of the parameter
α, 20 independent runs were performed for a duration of
5 CPU minutes, and the mean values of both measures
were determined.

Figure 2 plots the values of the average Modified Roger's
distance versus the Shannon's diversity index values of the
core subsets selected by MSTRAT, D-Method, and Core
Hunter for different values of α. The highest average Mod-
ified Roger's distance is observed when all weight is given
to genetic distance (i.e., α = 1.0). Likewise, the Shannon's
diversity index value is highest when no weight is given to
genetic distance (i.e., α = 0.0). In all other cases (0 <α <
1), a trade-off between the measures can be observed, rel-
ative to their respective weight in the pseudo-index. This
trade-off is characterized as the Pareto set, or Pareto fron-
tier. Note that sufficiently close values of α may not nec-
essarily result in distinct core subsets being selected.
Therefore, larger data sets (at the same sampling intensity)
may result in a larger Pareto set, as is the case when com-
paring the population data set (Figure 2 (left)) to the
accession data set (Figure 2 (right)). Interestingly, in all
three data sets, there are values of α such that Core Hunter
selects core subsets that simultaneously have better
genetic distance and genetic diversity than the core subsets
selected by either MSTRAT or D-Method.

The same experimental protocol was used for simultane-
ous optimization of the Cavalli-Sforza and Edwards dis-
tance and the number of effective alleles diversity index.
The margin by which Core Hunter outperforms MSTRAT
and D-Method is even larger, with results shown in Figure

Maximizing Modified Roger's (MR) distance and Shannon's diversity (SH) index simultaneouslyFigure 2
Maximizing Modified Roger's (MR) distance and Shannon's diversity (SH) index simultaneously. Core Hunter 
was run independently for 100 different values of the genetic distance weight parameter, α, in an attempt to identify the Pareto 
frontier for each of the three datasets having results for MSTRAT and D-Method. Each point on the frontier is the mean value 
of 20 independent runs. Results for the population, bulk and accession datasets are shown on the left, center, and right, respec-
tively.
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3. For the accession data set (Figure 3 (right)), Core
Hunter outperforms both algorithms for both measures
simultaneously, regardless of the weights assigned to the
respective measure.

Figure 4 shows the results of attempting to optimize Mod-
ified Roger's distance and the number of effective alleles
diversity index compared to the performance of Power
Core. Regardless of the value of α, Core Hunter always
finds core subsets with a higher number of effective alle-
les. When α < 0.88, the core subset selected by Power Core
has a higher average Modified Roger's distance than those
selected by Core Hunter. However, when more weight is
given to genetic distance (i.e., α ≥ 0.88), Core Hunter eas-
ily finds core subsets having better average Modified
Roger's distance and a higher number of effective alleles.

As was observed when optimizing a single measure, there
is a clear trade-off between genetic distance and genetic
diversity. The resulting core subsets discussed above do
not have as high average genetic distance than core subsets
optimized solely for that property. The same can be said
regarding genetic distance. There is a necessary trade-off of
one type of property to benefit the other. However, as
shown above, core subsets can be selected that still exhibit
high average genetic distance and diversity, especially
when compared with core subsets formed by MSTRAT, D-
Method, or Power Core.

Optimizing multiple genetic measures
To test the performance of Core Hunter when attempting
to optimize more than two measures, the algorithm was
run with weights assigned to all seven genetic measures
detailed in this paper, for each data set we tested. In all
cases, Core Hunter was run for 20 independent trials of 5
CPU minutes.

For the comparison with MSTRAT and D-Method, the
mean solution quality is reported in Table 1 (Core Hunter
(multi)) with each measure given equal weight. For each
of these data sets, Core Hunter is able to select a core sub-
set which better optimizes each genetic measure simulta-
neously than MSTRAT or D-Method, with the only
exception being the proportion of non-informative alleles
and coverage. By varying the weights of each measure (i.e.,
assigning more weight to PN or CV), a core subset can be
found which outperforms MSTRAT and D-Method for all
measures (data not shown).

Results comparing Core Hunter to Power Core can be
found in Table 2 (Core Hunter (multi)). As a goal of
Power Core is to optimize coverage, we assigned 99% of
the weight to coverage, and distributed the remaining 1%
of the weight equally amongst the other measures, for all
runs of Core Hunter. Our intention is to show that it is
possible to select core subsets which satisfy a primary
objective, such as ensuring perfect coverage (CV = 100.0),
while still attempting to optimize other measures in the
process. Indeed, Core Hunter is able to find a core subset
that outperforms Power Core for every genetic measure
simultaneously, with the exception of proportion of non-
informative alleles and coverage, as both algorithms find
an optimal solution.

As discussed in the previous section, the core subsets
found when optimizing multiple criteria generally per-
form worse with respect to individual measures when
compared with the core subsets selected for those specific
properties. For instance, when optimizing only Modified
Roger's distance, Core Hunter finds core subsets which
generally have 5% higher average Modified Roger's dis-
tance than the core subsets selected by Core Hunter
(multi) [see Additional file 1, Table S1]. While these core

Attempting to maximize Cavalli-Sforza and Edwards' (CE) distance and the number of effective alleles (NE) simultaneouslyFigure 3
Attempting to maximize Cavalli-Sforza and Edwards' (CE) distance and the number of effective alleles (NE) 
simultaneously. Core Hunter was run independently for 100 different values of the genetic distance weight parameter, α, in 
an attempt to identify the Pareto frontier for each of the three data sets having results for MSTRAT and D-Method. Each point 
on the frontier is the mean value of 20 independent runs. Results for the population, bulk and accession datasets are shown on 
the left, center, and right, respectively.
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subsets have higher average Modified Roger's distance,
they have 6% less allele coverage on average. Thus, the
various trade-offs between genetic distance, diversity and
preservation of rare alleles must considered in the context
of the intended purpose of the core subset being formed.
While optimizing a single one of these criteria will be
important in some instances, it will often be the case that
finding a suitable balance will be the desired outcome.

Selecting minimal size core subsets with perfect coverage
With respect to genetic data sets, a goal of Power Core is
to select a core subset that retains all unique alleles found
in the collection (perfect coverage) and is as small as pos-
sible. Using the SSR rice dataset, Kim et al. demonstrate
that Power Core is able to select smaller core subsets hav-
ing perfect coverage than a random selection method (R-
core), a proportional selection method (P-core) and
MSTRAT [16]. Details of the experimental protocol and
other selection methods are given in [16].

Core Hunter was run on the same data set, for 20 inde-
pendent runs of 5 CPU minutes, with the objective of
finding the smallest core subset, which retains all unique
alleles. Results for Core Hunter and those previously
reported in [16] can be found in Table 3. All 20 independ-
ent runs of Core Hunter found core subsets having perfect

coverage while containing only 80 accessions, 7 acces-
sions fewer than Power Core.

Effect of sampling intensity
The choice of sampling intensity when forming core sub-
sets is usually determined by a number of factors. In the
previous section the core subset was not intended to be a
fixed size, rather the smallest possible size which pro-
duced a core subset that retains all unique alleles of a col-
lection. This is beneficial for the application of genetic
conservation of rare alleles. Sampling intensity can be
chosen based on preliminary estimations of redundancy
in the original collection, which is an approach taken in
the program MSTRAT [14]. Often, the sampling intensity
is chosen based on a combination of factors, including
financial constraints, time constraints, and the particular
application for which the core subset is intended. A sam-
pling intensity of 5% to 20% has been suggested by many
authors in literature [2,12,37,38].

To determine the effect of sampling intensity on the vari-
ous genetic measures we selected core subsets for the three
Maize data sets using two new sampling intensities and
compared the results to the core subsets selected using the
default 20% sampling intensity. Results for 10% and 30%
sampling intensity are shown in Tables S3 and S4 [see
Additional file 1] and are summarized here. Two very
clear, yet expected, trends were observed. With very few
exceptions, core subsets selected with a 10% sampling
intensity generally had higher average genetic distance
and higher genetic diversity when compared with the core
subsets selected using 20% sampling intensity. However,
the resulting core subsets did not preserve rare alleles as
effectively as the larger core subsets unless the genetic
measure being optimized was specifically PN or CV. Core
subsets selected with a 30% sampling intensity preserved
rare alleles as well or better than smaller core subsets as
would be expected. However, the core subsets selected
generally had worse average genetic distance and lower
genetic diversity. There were exceptions noticed with
regards to the Population data set which are probably
explained by the small size of the original collection.

Overall, it was observed that a small sampling intensity of
10% results in core subsets which have high average

Attempting to maximize Modified Roger's (MR) distance and the number of effective alleles (NE) simultaneouslyFigure 4
Attempting to maximize Modified Roger's (MR) dis-
tance and the number of effective alleles (NE) simul-
taneously. Core Hunter was run independently for 100 
different values of the genetic distance weight parameter, α, 
in an attempt to identify the Pareto frontier on the rice SSR 
data set. Each point on the frontier is the mean value of 20 
independent runs.

Table 3: Comparison of core subset size and coverage

Strategy Coverage (CV) % Number of entries

Core Hunter 100.0 80
Power Core† 100.0 87
MSTRAT† 88.9 87
P-core† 55.0 100
R-core† 46.8 100

†results were previously reported in [16].
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genetic distance and diversity and could be an appropriate
choice for breeding programs. The higher sampling inten-
sities selected more homogeneous core subsets that pre-
served rare alleles better and would be an appropriate
choice for applications involving genetic conservation.

Variability of solution quality
As Core Hunter is a randomized algorithm, solution qual-
ity may vary between independent runs for the same prob-
lem instance. However, it was observed that in most cases
all independent runs of Core Hunter for a particular com-
bination of data set and genetic measure converge to the
same solution quality, yielding negligible variance. The
largest range of solution quality values observed involved
the optimization of the number of effective alleles (NE)
diversity index for the rice SSR data set, [9.42661,
9.43369], having a difference of less than 0.008. The
cumulative distribution of solution quality for 20 inde-
pendent runs is shown in Figure 5. The second largest
range of values, also for the rice data set, involved the opti-
mization of the expected proportion of heterozygous loci
per individual (HE) diversity index, [0.87333,0.87364],
having a difference of less than 0.0004. In nearly every
other experiment, the independent trials converged to
solutions having the same score.

Conclusion
We have demonstrated that our proposed algorithm for
core subset selection, Core Hunter, has improved upon
state-of-the-art selection methodologies in several ways.
Results for four distinct genetic data sets show that Core
Hunter, when attempting to optimize a single genetic dis-
tance or diversity measure, selects core subsets as good as
or better than existing algorithms, often by a significant

margin. Furthermore, when using the proposed pseudo-
index, the algorithm attempts to optimize multiple
genetic criteria simultaneously, often finding core subsets
that have better values for all genetic measures evaluated,
when compared with existing methods. Therefore, it is
now possible to select core subsets which satisfy both the
breeders' and taxonimists' perspectives, respective of a
weight assigned to each genetic measure as specified by
the user. Also, our algorithm is agnostic to the choice of
genetic measures. New measures can be incorporated
without altering the underlying algorithm. We have fur-
ther demonstrated that Core Hunter is able to select signif-
icantly smaller core subsets that retain all unique alleles
within a collection, than other algorithms designed for
this purpose such as Power Core.

While we believe Core Hunter will significantly improve
the process of core subset selection, there are a number of
directions in which this approach can be further
improved. First, our algorithm currently considers only
genetic data. Selection of crop varieties always depend on
phenotypic traits and a sole focus on genetic information
may bias results due to non-functional genetic variations.
Power Core [16], MSTRAT [14] and D-Method [8] all pro-
vide support for using phenotypic measures when select-
ing core subsets. Second, when combining a large number
of molecular marker data with phenotypic variables, it is
challenging to come up with a unified approach so that
information on both data sets can be utilized. While Core
Hunter is freely available for use, it currently lacks a rich
graphical user interface such as those found in Power Core
and MSTRAT. In order to make Core Hunter more accessi-
ble to users, development has begun on a rich graphical
user interface as well as a web based interface. Announce-
ments regarding these efforts will be made on the project
website.
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Solution quality varianceFigure 5
Solution quality variance. Cumulative distribution of solu-
tion quality, over 20 independent runs, is shown for the rice 
SSR data set when attempting to maximize the number of 
effective alleles diversity index.
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