Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 162015
Photo: A Paul-Bossuet/ICRISAT

Pigeonpea farmers in India.

The tagline of the CGIAR Generation Challenge Programme (GCP) is ‘Partnerships in modern crop breeding for food security’. One of GCP’s many rewarding partnerships was with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

The Institute was a source of valuable partnerships with highly regarded agricultural scientists and researchers, as well as of germplasm and genetic resources from its gene bank. With assistance from GCP, these resources have enabled scientists and crop breeders throughout Africa, Asia and Latin America to achieve crop improvements for chickpea, groundnut, pearl millet, pigeonpea and sorghum, all of which are staple crops that millions of people depend upon for survival.

“The philosophy of GCP at the start was to tap into and use the genomic recourses we had in our gene banks to develop ICRISAT’s and our partners’ breeding programmes,” says Pooran Gaur, GCP’s Product Delivery Coordinator for chickpeas, and Principal Scientist for chickpea genetics and breeding at ICRISAT.

ICRISAT’s gene bank is a global repository of crop genetic diversity. It contains 123,023 germplasm accessions – in the form of seed samples – assembled from 144 countries, making it one of the largest gene banks in the world.

The collection serves as insurance against genetic loss and as a source of resistance to diseases and pests, tolerance to climatic and other environmental stresses, and improved quality and yield traits for crop breeding.

Pooran says the ultimate goal of the GCP–ICRISAT partnership was to use the resources in the gene bank to develop drought-tolerant varieties that would thrive in semi-arid conditions and to make these varieties available to farmers’ fields within a decade.

Photo: S Kilungu/CCAFS

Harvesting sorghum in Kenya.

Setting a foundation for higher yielding, drought-tolerant chickpeas

Pooran was involved with GCP from its beginning in 2004 and was instrumental in coordinating chickpea projects.


Chickpea harvest, India.

“GCP got things started; it set a foundation for using genomic resources to breed chickpeas,” says Pooran. During Phase I of GCP (2004–2009), ICRISAT was involved in developing reference sets for chickpeas and developing mapping populations for drought-tolerance traits. It also collaborated with 19 other international research organisations to successfully sequence the chickpea genome in 2013 – a major breakthrough that paved the way for the development of even more superior chickpea varieties to transform production in semi-arid environments.

The International Chickpea Genome Sequencing Consortium, led by ICRISAT and partly funded by GCP, identified more than 28,000 genes and several million genetic markers. Pooran says these are expected to illuminate important genetic traits that may enhance new varieties.

The trait of most interest to many chickpea breeders is drought tolerance. In recent years, droughts in the south of India, the largest producer of chickpeas, have reduced yields to less than one tonne per hectare. Droughts have also diminished chickpea yields in Ethiopia and Kenya, Africa’s largest chickpea producers and exporters to India. While total global production of chickpeas is around 8.6 million tonnes per year, drought causes losses of around 3.7 million tonnes worldwide.


Putting it to the test: Rajeev Varshney (left, see below) and Pooran Gaur (right) inspecting a chickpea field trial.

Pooran says the foundation work supported by GCP was particularly important for identifying drought-tolerance traits. “We had identified plants with early maturing traits. This allowed us to develop chickpea varieties that have more chance of escaping drought when cereal farmers produce a fast-growing crop in between the harvest and planting of their main crops,” he says.

New varieties that grow and develop more quickly are expected to play a key role in expanding the area suitable for chickpeas into new niches where the available crop-growing seasons are shorter.

“In southern India now we are already seeing these varieties growing well, and their yield is very high,” says Pooran. “In fact, productivity has increased in the south by about seven to eight times in the last 10–12 years.”

Developing capacity by involving partners in Kenya and Ethiopia

Photo: GCP

Monitoring the water use of chickpea plants in experiments at Egerton University, Njoro, Kenya.

As part of GCP’s Tropical Legumes I project (TLI), incorporated within its Legume Research Initiative (RI), ICRISAT partnered with Egerton University in Kenya and the Ethiopian Institute of Agricultural Research (EIAR) to share breeding skills and resources to produce higher yielding, drought-tolerant chickpea varieties.

“When we first started working on this project in mid-2007, our breeding programme was very weak,” says Paul Kimurto of the Faculty of Agriculture at Egerton University, who was Lead Scientist for chickpea research in the TLI project. “We have since accumulated a lot of germplasm, a chickpea reference set and a mapping population, all of which have greatly boosted our breeding programme.”

Paul says that with this increased capacity, his team in Kenya had released six new varieties of chickpea in the five years prior to GCP’s close at the end of 2014, and were expecting more to be ready within in the next three years.

In fields across Ethiopia, meanwhile, the introduction of new varieties has already brought a dramatic increase in productivity, with yields doubling in recent years, according to Asnake Fikre, Crop Research Directorate Director for EIAR.

Varieties like the large-seeded and high-valued kabuli have presented new opportunities for farmers to earn extra income through the export industry, and indeed chickpea exports from eastern Africa have substantially increased since 2001. This has transformed Ethiopia’s chickpeas from simple subsistence crop to one of great commercial significance.

Photo: S Sridharan/ICRISAT

This chickpea seller in Ethiopia says that kabuli varieties are becoming more popular.

Decoding pigeonpea genome

Two years prior to the decoding of the chickpea genome, GCP’s Director Jean-Marcel Ribaut announced that a six-year, GCP-funded collaboration led by ICRISAT had already sequenced almost three-quarters of the pigeonpea genome.

“This will have significant impact on resource-poor communities in the semi-arid regions, because they will have the opportunity to improve their livelihoods and increase food availability,” Jean-Marcel stated in January 2012.

Pigeonpea, the grains of which make a highly nutritious and protein-rich food, is a hardy and drought-tolerant crop. It is grown in the semi-arid tropics and subtropics of Asia, Africa, the Americas and the Caribbean. This crop’s prolific seed production and tolerance to drought help reduce farmers’ vulnerability to potential food shortages during dry periods.

Photo: B Sreeram/ICRISAT

A pigeonpea farmer in his field in India.

The collaborative project brought together 12 participating institutes operating under the umbrella of the International Initiative for Pigeonpea Genomics. The initiative was led by Rajeev K Varshney, GCP’s Genomics Theme Leader and Director of the Center of Excellence in Genomics at ICRISAT. Other participants included BGI in Shenzhen, China; four universities; and five other advanced research entities, both private and public. The Plant Genome Research Program of the National Science Foundation, USA, also funded part of this research.

“We were able to assemble over 70 percent of the genome. This was sufficient to enable us to change breeding approaches for pigeonpea,” says Rajeev. “That is, we can now combine conventional and molecular breeding methods – something we couldn’t do as well before – and access enough genes to create many new pigeonpea varieties that will effectively help improve the food security and livelihoods of resource-poor communities.”

Pigeonpea breeders are now able to use markers for genetic mapping and trait identification, marker-assisted selection, marker-assisted recurrent selection and genomic selection. These techniques, Rajeev says, “considerably cut breeding time by doing away with several cropping cycles. This means new varieties reach dryland areas of Africa and Asia more quickly, thus improving and increasing the sustainability of food production systems in these regions.”

Several genes, unique to pigeonpea, were also identified for drought tolerance by the project. Future research may find ways of transferring these genes to other legumes in the same family – such as soybean, cowpea and common bean – helping these crops also become more drought tolerant. This would be a significant asset in view of the increasingly drier climates in these crops’ production areas.

“We cannot help but agree with William Dar, Director General of ICRISAT, who observed that the ‘mapping of the pigeonpea genome is a breakthrough that could not have come at a better time’,” says Jean-Marcel.


East African farmers inspect pigeonpea at flowering time.

Securing income-generating groundnut crops in Africa

Groundnut, otherwise known as peanut, is one of ICRISAT’s mandate crops. Groundnuts provide a key source of nutrition for Africa’s farming families and have the potential to sustain a strong African export industry in future.

“The groundnut is one of the most important income-generating crops for my country and other countries in East Africa,” says Patrick Okori, who is a groundnut breeder and Principal Scientist with ICRISAT in Malawi and who was GCP’s Product Delivery Coordinator for groundnuts.

“It’s like a small bank for many smallholder farmers, one that can be easily converted into cash, fetching the highest prices,” he says

It is the same in West Africa, according to groundnut breeder Issa Faye from the Institut Sénégalais de Recherches Agricoles (ISRA), who has been involved in GCP since 2008. “It’s very important for Senegal,” he says. “It’s the most important cash crop here – a big source of revenue for farmers around the country. Senegal is one of the largest exporters of groundnut in West Africa.”

In April 2014, the genomes of the groundnut’s two wild ancestral parents were successfully sequenced by the International Peanut Genome Initiative – a multinational group of crop geneticists, including those from ICRISAT, who had been working in collaboration for several years.

The sequencing work has given breeders access to 96 percent of all groundnut genes and provided the molecular map needed to breed drought-tolerant and disease-resistant higher yielding varieties, faster.

Photo: S Sridharan/ICRISAT

Drying groundnut harvest, Mozambique.

“The wild relatives of a number of crops contain genetic stocks that hold the most promise to overcome drought and disease,” says Vincent Vadez, ICRISAT Principal Scientist and groundnut research leader for GCP’s Legumes Research Initiative. And for groundnut, these stocks have already had a major impact in generating the genetic tools that are key to making more rapid and efficient progress in crop science

Chair of GCP’s Consortium Committee, David Hoisington – formerly ICRISAT’s Director of Research and now Senior Research Scientist and Program Director at the University of Georgia – says the sequencing could be a huge step forward for boosting agriculture in developing countries.

“Researchers and plant breeders now have much better tools available to breed more productive and more resilient groundnut varieties, with improved yields and better nutrition,” he says.

These resilient varieties should be available to farmers across Africa within a few years.

Supporting key crops in West Africa

Photo: N Palmer/CIAT

Harvested pearl millet and sorghum in Ghana.

With a focus on the semi-arid tropics, ICRISAT has been working closely with partners for 30 years to improve rainfed farming systems in West Africa. One sorghum researcher who has been working on the ground with local partners in Mali since 1998 is Eva Weltzien-Rattunde. She is an ICRISAT Principal Scientist in sorghum breeding and genetic resources, based in Mali, and was Principal Investigator for GCP’s Sorghum Research Initiative.

Eva and her team collaborated with local researchers at Mali’s Institut d’Economie Rurale (IER) and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development) on a project to test a novel molecular-breeding approach: backcross nested association mapping (BCNAM). Eva says this method has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

In another project, under GCP’s Comparative Genomics Research Initiative, Eva and her team are using molecular markers developed through the RI to select for aluminium-tolerant and phosphorus-efficient varieties and validating their performance in field trials across 29 environments in three countries in West Africa.

“Low phosphorus availability is a key problem for farmers on the coast of West Africa, and breeding phosphorus-efficient crops to cope with these conditions has been a main objective of ICRISAT in West Africa for some time,” says Eva.

“We’ve had good results in terms of field trials. We have at least 20 lines we are field testing at the moment, which we selected from 1,100 lines that we tested under high and low phosphorous conditions.” Eva says that some of these lines could be released as new varieties as early as 2015.

Ibrahima Sissoko, a data curator working with Eva’s team at ICRISAT in Mali, also adds that the collaborations and involvement with GCP have increased his and other developing country partners’ capacity in data management and statistical analysis, as well as helping to expand their network. “I can get help from other members of my sorghum community,” he says.

In summing up, Eva says: “Overall, we feel the GCP partnerships are enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties that will help farmers and feed the ever-growing population in West Africa.”

Photo: A Paul-Bossuet/ICRISAT

Enjoying a tasty dish of sorghum.

Tom Hash, millet breeder and Principal Scientist at ICRISAT and GCP Principal Investigator for millet, shares Eva’s sentiments on GCP and the impact it is having in West Africa.

Between 2005 and 2007, GCP invested in genetic research for millet, which is the sixth most important cereal crop globally and a staple food (along with sorghum) in Burkina Faso, Chad, Eritrea, Mali, Niger, northern Nigeria, Senegal and Sudan.

With financial support from GCP, and drawing on lessons learnt from parallel GCP genetic research, including in sorghum and chickpea, ICRISAT was able to mine its considerable pearl millet genetic resources for desirable traits.

Hari D Upadhyaya, Principal Scientist and Head of Genebank at ICRISAT in India, led this task to develop and genotype a ‘composite collection’ of pearl millet. The team created a selection that strategically reduced the 21,594 accessions in the gene bank down to just 1,021. This collection includes lines developed at ICRISAT and material from other sources, with a range of valuable traits including tolerance to drought, heat and soil salinity and resistance to blast, downy mildew, ergot, rust and smut, and even resistance to multiple diseases.

The team then used molecular markers to fingerprint the DNA of plants grown from the collection.

“GCP supported collaboration with CIRAD, and our pearl millet breeding teams learnt how to do marker-based genetic diversity analysis,” says Tom. “This work, combined with the genomic resources work, did make some significant contributions to pearl millet research.”

Over 100 new varieties of pearl millet have recently been developed and released in Africa by the African Centre for Crop Improvement in South Africa, another developing country partner of ICRISAT and GCP. Tom says the initial genetic research was pivotal to this happening.

Photo: N Palmer/CIAT

A Ghanaian farmer examines his pearl millet harvest.

From poverty to prosperity through partnerships

Patrick Okori says that GCP has enabled his organisation to make a much stronger contribution to the quality of science.

“Prior to GCP, ICRISAT was already one of the big investors in legume research, because that was its mandate. The arrival of GCP, however, expanded the number of partners that ICRISAT had, both locally and globally, through the resources, strategic meetings and partnership arrangements that GCP provided as a broad platform for engaging in genomic research and the life sciences.”

This expansion of ICRISAT, facilitated by GCP, also enabled researchers from across the world and in diverse fields to interact in ways they had never had the opportunity to before, says Vincent Vadez.

“GCP has allowed me to make contact with people working on other legumes, for example,” he says. “It has allowed us to test hypotheses in other related crops, and we’ve generated quite a bit of good science from that.”

Pooran Gaur has had a similar experience with his chickpea research at ICRISAT.

“GCP provided the first opportunity for us to work with the bean and cowpea groups, learning from each other. That cross-learning from other crops really helped us. You learn many things working together, and I think we have developed a good relationship, a good community for legumes now.”

This community environment has made the best use of an unusual variety of skills, knowledge and resources, agrees Rajeev Varshney.

“It brought together people from all kinds of scientific disciplines – from genomics, bioinformatics, biology, molecular biology and so on,” he says. “Such a pooling of complementary expertise and resources made great achievements possible.”

More links

Photo: A Paul-Bossuet/ICRISAT

Man and beast team up to transport chickpeas in Ethiopia.


Sep 282015


Photo: Agência BrasíliaSorghum is already a drought-hardy crop, and is a critical food source across Africa’s harsh, semi-arid regions where water-intensive crops simply cannot survive. Now, as rainfall patterns become increasingly erratic and variable worldwide, scientists warn of the need to improve sorghum’s broad adaptability to drought.

Crop researchers across the world are now on the verge of doing just that. Through support from the CGIAR Generation Challenge Programme (GCP), advanced breeding methods are enhancing the capacity of African sorghum breeders to deliver more robust varieties that will help struggling farmers and feed millions of poor people across sub-Saharan Africa.


A farmer in her sorghum field in Tanzania.

Sorghum at home in Africa

From Sudanese savannah to the Sahara’s desert fringes, sorghum thrives in a diverse range of environments. First domesticated in East Africa some 6000 years ago, it is well adapted to hot, dry climates and low soil fertility, although still depends on receiving some rainfall to grow and is very sensitive to flooding.

In developed countries such as Australia, sorghum is grown almost exclusively to make feed for cattle, pigs and poultry, but in many African countries millions of poor rural people directly depend on the crop in their day-to-day lives.


A Malian woman and her child eating sorghum.

In countries like Mali sorghum is an important staple crop. It is eaten in many forms such as couscous or (a kind of thick porridge), it is used for making local beer, and its straw is a vital source of feed for livestock.

While the demand for, and total production of, sorghum has doubled in West Africa in the last 20 years, yields have generally remained low due to a number of causes, from drought and problematic soils, to pests and diseases.

“In Mali, for instance, the average grain yield for traditional varieties of sorghum has been less than one tonne per hectare,” says Eva Weltzein-Rattunde, Principal Scientist for Mali’s sorghum breeding programme at the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT).

In a continued quest to integrate ways to increase productivity, GCP launched its Sorghum Research Initiative (RI) in 2010. This aimed to investigate and apply the approaches by which genetics and molecular breeding could be used to improve sorghum yields through better adaptability, particularly in the drylands of West Africa where cropping areas are large and rainfall is becoming increasingly rare.

Kick starting the work was a GCP-funded collaboration between project Principal Investigator Niaba Témé, plant breeder at Mali’s Institut d’économie rurale (IER) and the RI’s Product Delivery Coordinator Jean-François Rami of the Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), France, with additional support from the Syngenta Foundation for Sustainable Agriculture in Switzerland.

The collaboration aimed to develop ways to improve sorghum’s productivity and adaptation in the Sudano-Sahelian zone, starting with Mali in West Africa, and expanding later across the continent to encompass Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Photo: F Noy/UN Photo

A farmer harvest sorghum in Sudan.

Sorghum gains from molecular research

Since 2008, with the help of CIRAD and Syngenta, Niaba and his team at IER have been learning how to use molecular markers to develop improved sorghum germplasm through identifying parental lines that are more tolerant and better adapted to the arid and volatile environments of Mali.

The two breeding methods used in the collaboration are known as marker-assisted recurrent selection (MARS) and backcross nested association mapping (BCNAM).


Photo: N Palmer/CIAT“MARS identifies regions of the genome that control important traits,” explains Jean-François. “It uses molecular markers to explore more combinations in the plant populations, and thus increases breeding efficiency.”

Syngenta, he explains, became involved through its long experience in implementing MARS in maize.

“Syngenta advised the team on how to conduct MARS and ways we could avoid critical pitfalls,” he says. “They gave us access to using the software they have developed for the analysis of data, and this enabled us to start the programme immediately.”

With the help of the IER team, two bi-parental populations from elite local varieties were developed, targeting two different environments found in sorghum cropping areas in Mali. “We were then able to use molecular markers through MARS to identify and monitor key regions of the genome in consecutive breeding generations,” says Jean-François.

“When we have identified the genome regions on which to focus, we cross the progenies and monitor the resulting new progenies,” he says. “The improved varieties subsequently go to plant breeders in Mali’s national research program, which will later release varieties to farmers.”

Jean-François is pleased with the success of the MARS project so far. “The development of MARS addressed a large range of breeding targets for sorghum in Mali, including adaptation to the environment and grain productivity, as well as grain quality, plant morphology and response to diseases,” he says. “It proved to be efficient in elucidating the complex relationships between the large number of traits that the breeder has to deal with, and translating this into target genetic ideotypes that can be constructed using molecular markers.”

Jean-François says several MARS breeding lines have already shown superior and stable performance in farm testing as compared to current elite lines, and these will be available to breeders in Mali in 2015 to develop new varieties.


Eva Weltzein-Rattunde examines sorghum plants with farmers in Mali.


Like MARS, the BCNAM approach shows promise for being able to quickly gain improvements in sorghum yield and adaptability to drought, explains Niaba, who is Principal Investigator of the BCNAM project. BCNAM may be particularly effective, he says, in developing varieties that have the grain quality preferences of Malian farmers, as well as the drought tolerance that has until now been unavailable.

“BCNAM involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations,” he explains. “The benefit of this approach is it can lead to detecting elite varieties much faster.”

Eva and her team at ICRISAT have also been collaborating with researchers at IER and CIRAD on the BCNAM project. The approach, she says, has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project,” she says. “Overall, we feel the experience is enhancing our capacity here, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Indeed, during field testing in Mali, BCNAM lines derived from the elite parent variety Grinkan have produced more than twice the yields of Grinkan itself. As they are rolled out in the form of new varieties, the team anticipates that they will have a huge positive impact on farmers’ livelihoods.

Photo: E Weltzein-Rattunde/ICRISAT

Malian sorghum farmers.

Mali and Queensland similar problem, different soil

In Mali and the wider Sahel region within West Africa, cropping conditions are ideal for sorghum. The climate is harsh, with daily temperatures on the dry, sun-scorched lower plains rarely falling below 30°C. With no major river system, the threat of drought is ever-present, and communities are entirely dependent on the 500 millimetres of rain that falls during the July and August wet season.

“All the planting and harvesting is done during the rainy season,” says Niaba. “We have lakes that are fed by the rain, but when these lakes start to dry up farmers rely mostly on the moisture remaining in the soil.”

Over 17 thousand kilometres to the east of Mali, in north-eastern Australia’s dryland cropping region, situated mainly in the state of Queensland, sorghum is the main summer crop, and is considered a good rotational crop as it performs well under heat and moisture stress. The environment here is similar to Mali’s, with extreme drought a big problem.

Average yields for sorghum in Queensland are double those in Mali—around two tonnes per hectare—yet growers still consider them low, directly limited by the crop’s predominantly water-stressed production environment in Australia.

One of the differentiating factors is soil. “Queensland has a much deeper and more fertile soil compared to Mali, where the soil is shallow, with no mulch or organic matter,” says Niaba. “Also, there is no management at the farm level in Mali, so when rain comes, if the soil cannot take it, we lose it.”

Photo: Bart Sedgwick/Flickr (Creative Commons)

Sorghum in Queensland, Australia.

Making sorghum stay green, longer

Another key reason for the difference in yields between Queensland and Mali is that growers in Queensland are sowing a sorghum variety of with a genetic trait that makes it more tolerant to drought.

This trait is called ‘stay-green’, and over the last two decades it has proven valuable in increasing sorghum yields, using less water, in north-eastern Australia and the southern United States.

Stay-green allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought—that is, drought that occurs after the plant has flowered. This means the plants can keep growing and produce more grain in drier conditions.

“We’ve found that stay-green can improve yields by up to 30 percent in drought conditions with very little downside during a good year,” says Andrew Borrell from the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at the University of Queensland (UQ) in Australia.

“Plant breeders have known about stay-green for some 30 years,” he says. “They’d walk their fields and see that the leaves of certain plants would remain green while others didn’t. They knew it was correlated with high yield under drought conditions, but didn’t know why.”

Stay-green’s potential in Mali

With their almost 20 years working on understanding how stay-green works, Andrew and his colleagues at UQ were invited by GCP in 2012 to take part in the IER/CIRAD collaborative project, to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties and enriching Malian pre-breeding material for the trait.

A pivotal stage in this new alliance was a 12-month visit to Australia by Niaba and his IER colleague Sidi Coulibaly, to work with Andrew and his team to understand how stay-green drought resistance works in tall Malian sorghum varieties.

“African sorghum is very tall and sensitive to variation in day length,” explains Andrew. “We have been looking to investigate if the stay-green mechanism operates in tall African sorghums (around four metres tall) in the same way that it does in short Australian sorghum (one metre tall).”

Having just completed a series of experiments at the end of 2014, the UQ team consider their data as preliminary at this stage. “But it looks like we can get a correlation between stay-green and the size and yield of these Malian lines,” says Andrew. “We think it’s got great potential.”

Photo: S Sridharan/ICRISAT

Sorhum growing in Mozambique.

Sharing knowledge as well as germplasm

Eva Weltzein-Rattunde has played more of an on-the-ground capacity development role in Mali since accepting her position at ICRISAT in 1998. She says “the key challenges have been improving the infrastructure of the national research facilities [in Mali] to do the research as well as increasing the technical training for local agronomists and researchers.”


A Malian farmer harvests Sorghum.

A large part of GCP’s focus is building just such capacity among developing country partners to carry out crop research and breeding independently in future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

A key objective of the IER team’s Australian visit was to receive training in the methods for improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more,” says Niaba. This training complemented previous training Niaba and IER researchers had from CIRAD and ICRISAT through the MARS and BCNAM projects.

“We [CIRAD] have a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission,” says Jean-François. “We’ve hosted several IER students here in France and we are always interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding.”

Photo: Rita Willaert/Flickr (Creative Commons)

Harvested sorghum in Sudan.

Working together to implement MARS in the sorghum breeding program in Mali represented many operational challenges, Jean-François explains. “The approach requires a very tight integration of different and complementary skills, including a strong conventional breeding capacity, accurate breeders’ knowledge, efficient genotyping technologies, and skills for efficient genetic analyses,” he says.

Because of this requirement, he adds, there are very few reported experiences of the successful implementation of MARS.  It is also the reason why these kinds of projects would normally not be undertaken in a developing country like Mali, but for the support of GCP and the dedicated mentorship of Jean-François.

sorghum quote 2“GCP provided the perfect environment to develop the MARS approach,” says Jean-François. “It brought together people with complementary skills, developed the Integrated Breeding Platform (IPB), and provided tools and services to support the programme.”

In addition to developing capacity, Jean-François says one of the great successes of both the MARS and the BCNAM projects was how they brought together Mali’s sorghum research groups working at IER and ICRISAT in a common effort to develop new genetic resources for sorghum breeding.

“This work has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent populations that have been developed are analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François. “This community development is another major achievement of the Sorghum Research Initiative.” The major challenge, he adds, will be whether this community can be kept together beyond GCP.

Considering the numerous ‘non-GCP’ activities that have already been initiated in Africa as a result of the partnerships forged through GCP research, Jean-François sees a clear indication that these connections will endure well beyond GCP’s time frame.

GCP’s sunset is Mali’s sunrise

Photo: S Sridharan/ICRISAT

Sorghum at sunset in Mozambique.

Among the new activities Jean-François lists are both regional and national projects aimed at building on what has already been achieved through GCP and linking national partners together. These include the West African Agricultural Productivity Program (WAAPP), the West Africa Platform being launched by CIRAD as a continuation of the MARS innovation, and another MARS project in Senegal and Niger through the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet at Kansas State University.

“These are all activities which will help maintain the networks we’ve built,” Jean-François says. “I think it is very important that these networks of people with common objectives stick together.”

sorghum quoteFor Niaba, GCP provided the initial boost needed for these networks to emerge and thrive. “We had some contacts before, but we didn’t have the funds to really get into a collaboration. This has been made possible by GCP. Now we’re motivated and are making connections with other people on how we can continue working with the material we have developed.”

“I can’t talk enough of the positive stories from GCP,” he adds. “GCP initiated something, and the benefits for me and my country I cannot measure. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so important.”

More links


A sorghum farmer in her field in Tanzania.

Mar 102015


Niaba Témé

Niaba Témé

“I can’t talk enough about the positive stories from the Generation Challenge Programme [GCP]. It initiated something new. I cannot measure its benefits for my country, for myself and for the sorghum-breeding and -producer communities. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so very important.”

Growing up in a farming community in Mali, on the southern edge of the Sahara Desert, plant breeder Niaba Témé knows the ups and downs of farming in the harsh, volatile semiarid regions of Africa.

“I used to love harvesting the millet and helping my mother with her groundnut crops,” he remembers fondly. “We grew other dryland crops too, like sorghum, cowpeas, Bambara nuts, sesame and dah.”

Niaba’s village of Yendouma-Sogol is one of many villages balanced along the edge of the Bandiagara escarpment – 150 kilometres of sandstone cliffs soaring hundreds of metres above the sandy plains below. The region is considered one of the most challenging places in the world to be a farmer. The climate is harsh, with the average daily temperature on the dry, sun-scorched plains rarely falling below 30°C and often exceeding 40°C during the hottest months of the year. With no major water source available for drinking, cropping and livestock husbandry, the threat of drought is ever-present here, as it is across much of Africa’s semiarid landscape.

While much of Mali’s irrigated agriculture relies on water from the River Niger, villages like Niaba’s depend entirely on the 500 or so millimetres of rainfall they receive during the July–August wet season. In the years that the rains didn’t come, Niaba’s family were unable to harvest anything at all. The repeated failure of his parents’ crops – coupled with a natural interest in science – inspired Niaba to embark on a career where he could help farming families like his own defend themselves against the risks of drought and extreme temperatures.

Photo: F Fiondella/CCAFS

Farmland in Diouna, Mali. Farmers here must contend with the Sahel’s dry, sandy soil and whatever limited rainfall the clouds bring to grow sorghum, millet, maize, and other crops.

Niaba’s journey

Niaba’s first big step along the research road was when he enrolled to study agronomy at Mali’s Institut Polytechnique Rural de Formation et de Recherche Appliquée in Eastern Bamako. Within two years he was offered a scholarship to study plant breeding at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderabad, India. He then worked at the Cinzana Research Station in Mali.

Niaba later spent 11 years in the USA completing a bachelor’s degree, master’s degree and finally PhD in agronomy at Texas Tech University before returning home to Mali in 2007, where he was soon recruited by Mali’s Institut d’Économie Rurale (IER) to take charge of their new biotechnology lab at the Centre Régional de Recherche Agronomique.

His journey with the Generation Challenge Programme began in 2010 when IER received GCP funding to carry out sorghum research in Africa as part of GCP’s Sorghum Research Initiative (RI) launched that same year. The project was a collaboration with ICRISAT and France’s Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development). With an initial focus on Mali, the project’s results would expand to encompass five other countries in the Sudano-Sahelian region: Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Sorghum the survivor gets even tougher


Hand milling of sorghum grains – an arduous task, mostly carried out by poor women in the drylands of Africa.

Drought-hardy crops such as sorghum are ideal for Mali’s conditions, where more water-intensive crops such as maize simply cannot survive. Millions of poor rural people across Africa depend on sorghum in their day-to-day lives: it is eaten in many forms, used to make alcoholic beverages and as animal fodder, and is converted into biofuel for cooking.

But even sorghum has its limits. While the demand for it has doubled in West Africa in the last 20 years, productivity has generally remained low, with an average yield of only one tonne per hectare for traditional varieties in Mali. This is mostly due to post-flowering drought, poor soils and farming conditions, and limited access to quality, high-yielding seed. As rainfall patterns become increasingly erratic and variable across the world, scientists warn of the need to improve sorghum’s broad adaptability to drought, to ensure future food security in Africa.

The GCP Sorghum RI, with Niaba’s help, aimed to support the development of new breeds of sorghum that could survive better on less water in drought-stricken parts of Africa. It sought to improve sorghum yield and quality for African farmers and, in turn, improve the livelihoods and food security of communities across sub-Saharan Africa.

In 2012, Niaba found himself travelling once again, this time to Australia with IER colleague Sidi B Coulibaly. They spent three weeks working alongside, and training with, Andrew Borrell and his sorghum research team at the Queensland Government Department of Agriculture, Fisheries and Forestry’s (DAFF) Hermitage Research Facility in Warwick.

“We have been collaborating with researchers at DAFF and The University of Queensland since 2009, to introduce what is called the ‘stay-green’ drought-resistant gene into our local sorghum varieties,” says Niaba.

Photo provided by A Borrell

Left to right: Niaba Témé with David Jordan (Australia), Sidi B Coulibaly (Mali) and Andrew Borrell (Australia), visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Niaba’s no longer green when it comes to using stay-green

Stay-green is a drought adaptation trait that allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought. This means the plants can keep growing and produce more grain in drier conditions. It has contributed significantly to an increase in sorghum yields, using less water, in north-eastern Australia and southern USA for the last two decades.

GCP’s stay-green project aimed to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties, enriching Malian pre-breeding material for the trait, and training African sorghum researchers, such as Niaba, in the methods of improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

Photo provided by E Weltzein-Rattunde

A sorghum farmer in Mali.

“In Australia we learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology,” says Niaba.

Learning to use molecular markers was particularly exciting, he says, “because molecular markers make it easier to see if the plant being bred has the gene related to drought tolerance, without having to go through the lengthy process of growing the plant to maturity and risk missing the trait through visual inspection.”

Niaba says the molecular training he received in Australia complemented previous training he had received through a collaborative GCP-funded project with Agropolis–CIRAD and Syngenta Foundation for Sustainable Agriculture, in which he learnt to use molecular markers to identify and monitor key regions of sorghum’s genome in consecutive breeding generations through a process called marker-assisted recurrent selection (MARS).

A large part of GCP’s focus is building such capacity among developing country partners to carry out crop research and breeding independently in the future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

“Our time in Australia was an intense but rewarding experience, more so for the fact that between the efforts of Australia and Mali, we have now developed new drought-tolerant crops which will enhance food security for my country,” says Niaba. “Similarly with the help of Agropolis–CIRAD and Syngenta, we are using molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali.”

Photo provided by A Borrell

Niaba (foreground) examining a sorghum panicle at trials in Mali in 2009.

Sorghum sunrise in Mali

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with Agropolis–CIRAD and collaborators in Africa at ICRISAT.

“In that project, we were trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba. “This involved using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

The approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought. The project developed 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents. The lines are now being validated in Mali.

Photo: P St-Jacques/DFATD-MAECD

Agronomists inspect a field of sorghum in Mali.

Niaba says such successful collaborations and capacity development opportunities have been made possible only through GCP support.

“We had some contacts before, but we didn’t have the funds or skills to really get into a collaboration. Now we’re motivated and are making connections with other people so we can continue working with the material we have developed.

“GCP’s time may be ending, but it very much represents a new day – a sunrise for the work we are doing with sorghum here in Mali.”

More links

Photo: N Palmer/CIAT

Sorghum for sale.