Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Nov 062015
 

 

 Photo: C Schubert/CCAFSWhere to begin a decade-long story like that of the CGIAR Generation Challenge Programme (GCP)? This time-bound programme concluded in 2014 after successfully catalysing the use of advanced plant breeding techniques in the developing world.

Like all good tales, the GCP story had a strong theme: building partnerships in modern crop breeding for food security. It had a strong cast of characters: a palpable community of staff, consultants and partners from all over the world. And it had a formidable structure – two distinct phases split equally over the decade to first discover new plant genetic information and tools, and then to apply what the researchers learnt to breed more tolerant and resilient crops.

In October 2014, at the final General Research Meeting in Thailand, GCP Director Jean-Marcel Ribaut paid tribute to GCP’s cast and crew: “To all the people involved in GCP over the last 12 years, you are the real asset of the Programme,” he told them.

“In essence, our work has been all about partnerships and networking, bringing together players in crop research who may otherwise never have worked together,” says Jean-Marcel. “GCP’s impact is not easy to evaluate but it’s extremely important for effective research into the future. We demonstrated proofs of concept that can be scaled up for powerful results.”

A significant aspect of GCP’s legacy is the abundance of collaborations it forged and fostered between international researchers. A typical GCP project brought together public and private partners from both developing and developed nations and from CGIAR Centres. In all, more than 200 partners collaborated on GCP projects.

Photo: GCP

Just some of the extended GCP family assembled for the Programme’s final General Research Meeting in 2014.

The idea that the ‘community would pave the way towards success’ was always a key foundation of GCP, according to Dave Hoisington, who was involved with GCP from its conception and was latterly Chair of GCP’s Consortium Committee. “We designed GCP to provide opportunities for researchers to work together,” says Dave. He is a senior research scientist and program director at the University of Georgia, and was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT).

“GCP was the mechanism that would help us to complete our mission – to tap into the rich genetic diversity of crops and package it so that breeding programme researchers could integrate it into their operations,” says Dave.

Photo: ICRISAT

A little girl tucks into sorghum porridge in Mali.

The dawn of a new generation

Food security in the developing world continues to be one of the greatest global challenges of our time. One in nine people worldwide – or more than 820 million people – go hungry every day.

Although this figure is currently diminishing, a changing global climate is making food production more challenging for farmers. Farmers need higher yielding crops that can grow with less water, tolerate higher temperatures and poorer soils, and resist pests and diseases.

The turn of the millennium saw rapid technological developments emerging in international molecular plant science. New tools and approaches were developed that enabled plant scientists, particularly in the developing world, to make use of genetic diversity in plants that was previously largely inaccessible to them. These tools had the potential to increase plant breeders’ capacity to rapidly develop crop varieties able to tolerate extreme environments and yield more in farmers’ fields.

Photo: J van de Gevel/Bioversity International

Wheat varieties in a field trial.

Dave was one scientist who early on recognised the significance and potential of this new dawn in plant science. In 2002, while working at CIMMYT, he teamed up with the Center’s then Director General, Masa Iwanaga, and its then Executive Officer for Research, Peter Ninnes – another long-term member of the GCP family who at the other end of the Programme’s lifespan became its Transition Manager. Together with a Task Force of other collaborators from CIMMYT, the International Rice Research Institute (IRRI) and IPGRI (now Bioversity International), they drafted and presented a joint proposal to form a CGIAR Challenge Programme – and so GCP was conceived.

The five CGIAR Challenge Programmes were the early precursors of the current CGIAR Research Programs. They introduced a new model for collaboration among CGIAR Research Centers and with external institutes, particularly national breeding programmes in developing countries.

A programme where the spirit is palpable

Photo: N Palmer/CIAT

Failed harvest: this Ghanaian farmer’s maize ears are undersized and poorly developed due to drought.

From the beginning, GCP had collaboration and capacity building at its heart. As encapsulated in its tagline, “partnerships in modern crop breeding for food security,” GCP’s aim was to bring breeders together and give them the tools to more effectively breed crops for the benefit of the resource-poor farmers and their families, particularly in marginal environments.

GCP’s primary focus on was on drought tolerance and breeding for drought-prone farming systems, since this is the biggest threat to food security worldwide – and droughts are already becoming more frequent and severe with climate change. However, the Programme made major advances in breeding for resilience to other major stresses in a number of different crops, including acid soils and important pests and diseases. It also sought improved yields and nutritional quality.

The model for the Programme was that it would work by contracting partner institutes to conduct research, initially through competitive projects and later through commissioning. These partnerships would ensure that GCP’s overall objectives were met. For Dave, GCP set the groundwork for modern plant breeding.

“GCP demonstrated that you can tap into genetic resources and that they can be valuable and can have significant impacts on breeding programmes,” he says.

“I think GCP started to guide the process. Without GCP, the adoption, testing and use of molecular technologies would probably have been delayed.”

Photo: Meena Kadri/Flickr (Creative Commons)

Harvesting wheat in India.

Masa Iwanaga, who is now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), says that the key to the proposal and ultimate success of GCP was the focus on building connections between partners worldwide. “By providing the opportunity for researchers from developed countries to partner with researchers in developing countries, it helped enhance the capacity of national programmes in developing countries to use advanced technology for crop improvement.”

While not all partnerships were fruitful, Jean-Marcel has observed that those participants who invested in partnerships and built trust, understanding and communication produced some of the most successful results. “We created this amazing chain of people, stretching from the labs to the fields,” said Jean-Marcel, discussing the Programme in a 2012 interview.

“Perhaps the best way I can describe it is as a ‘GCP spirit’ created by the researchers we worked with.

“The Programme’s environment is friendly, open to sharing and is marked by a strong sense of community and belonging. The GCP spirit is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

Exploring gene banks to uncover genetic wealth

GCP started operations in 2004 and was designed in two five-year phases, 2004–2008 and 2009–2013. 2014 was a transition year for orderly closure.

Phase I focussed on upstream research to generate knowledge and tools for modern plant breeding. It mainly consisted of exploration and discovery projects, funded on a competitive basis, pursuing the most promising molecular research and high-potential partnerships.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR gene banks,” says Dave Hoisington.

Photo: IITA

Gene bank samples give a small snapshot of cowpea diversity.

CGIAR’s gene banks were originally conceived purely for conservation, but breeders increasingly recognised the tremendous value of studying and utilising these collections. Over the years they were able to use gene banks as a valuable source of new breeding material, but were hampered by having to choose seeds almost blindly, with limited knowledge of what useful traits they might contain.

“We realised we could use molecular tools to help scan the genomes and discover genes in crops of interest and related species,” says Dave. “The genes we were most interested in were ones that helped increase yield in harsh environments, particularly under drought.”

By studying the genomes of wild varieties of wheat, for example, researchers found genes that increase wheat’s tolerance of water stress.

Photo: International Potato Center (CIP)

Sweetpotato diversity.

GCP-supported projects analysed naturally occurring genetic diversity to produce cloned genes, informative markers and reference sets for 21 important food crops. ‘Reference sets’, or ‘reference collections’ reduce search time for researchers: they are representative selections of a few hundred plant samples (‘accessions’) that encapsulate each crop’s genetic diversity, narrowed down from the many thousands of gene bank accessions available. The resources developed through GCP have already proved enormously valuable, and will continue to benefit researchers for years to come.

For example, researchers developed 52 new molecular (DNA) markers for sweetpotato to enable marker-assisted selection for resistance to sweet potato virus disease (SPVD). For lentils, a reference set of about 150 accessions was produced, a distillation down to 15 percent of the global collection studied. And for barley, 90 percent of all the different characteristics of barley were captured within 300 representative plant lines.

Photo: ICARDA

Harvesting barley in Ethiopia.

The leader of GCP’s barley research, Michael Baum, who directs the Biodiversity and Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA), says the reference set is a particular boon for a researcher new to barley.

“By looking at 300 lines, they see the diversity of 3,000 lines without any duplication,” says Michael. “This is much better and quicker for a plant breeder.”

Similarly, the lentil reference set serves as a common resource for ICARDA’s team of lentil breeders, facilitating efficient collaboration, according to Aladdin Hamweih of ICARDA, who was charged with developing the lentil collection for GCP.

“These materials can be accessed to achieve farming goals – to produce tough plants suitable for local environments. In doing this, we give farmers a greater likelihood of success, which ultimately leads to improving food security for the wider population,” Aladdin says.

An important aspect of the efforts within Phase I was GCP’s emphasis on developing genomic resources such as reference sets for historically under-resourced crops that had received relatively little investment in genetic research. These made up most of GCP’s target crops, and included: bananas and plantains; cassava; coconuts; common beans; cowpeas; chickpeas; groundnuts; lentils; finger, foxtail and pearl millets; pigeonpeas; potatoes; sorghum; sweetpotatoes and yams.

Although not all of these historically under-resourced crops continued to receive research funding into Phase II, the outcomes from Phase I provided valuable genetic resources and a solid basis for the ongoing use of modern, molecular-breeding techniques. Indeed, thanks to their GCP boost, some of these previously neglected species have become model crops for genetic and genomic research – even overtaking superstar crops such as wheat, whose highly complex genome hampers scientists’ progress.

Photo: N Palmer/CIAT

Banana harvest for sale in Rwanda.

A need to focus and deliver products

“Phase I provided plenty of opportunity for researchers to tap into genetic diversity,” says Jean-Marcel. “We opened the door for a lot of different topics which helped us to identify projects worth pursuing further, as well as identifying productive partnerships. But at the same time, we were losing focus by spreading ourselves too thinly across so many crops.”

This notion was confirmed by the authors of an external review conducted in 2008, commissioned by CGIAR. This recommended consolidating GCP’s research in order to optimise efficiency and increase outputs during GCP’s second phase, while also enhancing potential for longer term impact.

Transparency and a willingness to respond and adapt were always core GCP values. The Programme embraced external review throughout its lifetime, and was able to make dynamic changes in direction as the best ways to achieve impact emerged. Markus Palenberg, Managing Director of the Institute for Development Strategy in Germany, was a member of the 2008 evaluation panel.

“One major recommendation from the evaluation was to focus on crops and tools which would provide the greatest impact in terms of food security,” recounts Markus, who later joined GCP’s Executive Board. “This resulted in the Programme refocusing its research on only nine core crops.” These were cassava, beans, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

Photo: Mann/ILRI

Hard work: harvesting groundnut in Malawi.

GCP’s decision-making process on how to focus its Phase II efforts was partly guided by research the Programme had commissioned, documented in its Pathways to impact brief No 1: Where in the world do we start? This took global data on the number of stunted – i.e., severely malnourished – children, as a truer indicator of poverty than a monetary definition, and overlaid it on maps showing where drought was most likely to occur and have a serious impact on crop productivity. This combination of poverty and vulnerable harvests was used to determine the farming systems where GCP might have most impact.

The Programme also attempted to maintain a balance between types of crops, including each of the following categories: cereals (maize, rice, sorghum, wheat), legumes (beans, chickpeas, cowpeas, groundnuts), and roots and tubers (cassava).

The crops were organised into six crop- specific Research Initiatives (RIs) – legumes were consolidated into one – plus a seventh, Comparative Genomics, which focused on exploiting genetic similarities among rice, maize and sorghum to find and deploy sources of tolerance to acid soils.

Photo: IRRI

Child eating rice.

The research under the RIs built on GCP’s achievements in Phase I, moving from exploration to application. The change in focus was underpinned by the planned shift from competitive to commissioned projects, allowing the Programme to continue to support its strongest partnerships and research strands.

“The RIs focused on promoting the use of modern integrated breeding approaches, using both conventional and molecular breeding methods, to improve each crop through a series of specific projects undertaken in more than 30 countries,” says Jean-Marcel. “More importantly, the RIs were focused on creating new genetic material and varieties of plants that would ultimately benefit farmers.”

Such products released on the ground included new varieties of:

  • cassava resistant to several diseases, tolerant to drought, nutritionally enhanced to provide high levels of vitamin A, and with higher starch content for high-quality cassava flour and starch processing
  • chickpea tolerant to drought and able to thrive in semi-arid conditions, already providing improved food and income security for smallholder African farmers  – yields have doubled in Ethiopia – and set to help them supply growing demand for the legume in India
  • maize with higher yields, tolerant to high levels of aluminium in acid soils, resistant to disease, adapted to local conditions in Africa – and with improved phosphorus efficiency in the pipeline
  • rice with tolerance to drought and low levels of phosphorus in acid soils, disease resistance, high grain quality, and tolerance to soil salinity – with improved aluminium tolerance on the way too
Photo: CSISA

Harvesting rice in India.

Over the coming years, many more varieties developed through GCP projects are expected to be available to farmers, as CGIAR Research Centres and national programmes continue their work.

These will include varieties of:

  • common bean resistant to disease and tolerant to drought and heat, with higher yields in drier conditions – due for release in several African countries from 2015 onwards
  • cowpea resistant to diseases and insect pests, with higher yields, and able to tolerate worsening drought – set for release in several countries from 2015, to secure and improve harvests in sub-Saharan Africa
  • groundnut tolerant to drought and resistant to pests, diseases, and the fungi that cause aflatoxin contamination, securing harvests and raising incomes in some of the poorest regions of Africa
  • maize tolerant to drought and adapted to local conditions and tastes in Asia
  • sorghum that is even more robust and adapted to increasing drought in the arid areas of sub-Saharan Africa – plus sorghum varieties able to tolerate high aluminium levels in acid soils, set for imminent release
  • wheat with heat and drought tolerance – as well as improved yield and grain quality – for India and China, the two largest wheat producers in the world
Photo: N Palmer/CIAT

Groundnut harvest, Ghana.

Giving a voice to all the cast and crew

The 2008 external review also recommended slight changes in governance. It suggested GCP receive more guidance from two proposed panels: a Consortium Committee and an independent Executive Board.

Dave Hoisington, who chaired the Committee from 2010, succeeding the inaugural Chair Yves Savidan, explains: “GCP was not a research programme run by a single institute, but a consortium of 18 institutes. By having a committee of the key players in research as well as an independent board comprising people who had no conflict of interest with the Programme, we were able to make sure both the ‘players’ and ‘referees’ were given a voice.”

Jean-Marcel says providing this voice to everyone involved was an important facet of effective management. “Given that GCP was built on its people and partnerships, it was important that we restructured our governance to provide everyone with a representative to voice their thoughts on the Programme. We have always tried to be very transparent.”

The seven-member Executive Board was instated in June 2008 to provide oversight of the scientific strategy of the Programme. Board members had a wide variety of skills and backgrounds, with expertise ranging across molecular biology, development assistance, socioeconomics, academia, finance, governance and change management.

Andrew Bennett, who followed inaugural Chair Calvin Qualset into the role in 2009, has more than 45 years of experience in international development and disaster management and has worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

“The Executive Board’s first role was to provide advice and to help the Consortium Committee and management refocus the Programme,” says Andrew.

Photo: IRRI

Rice seed diversity.

‘Advice’ and ‘helping’ are not usually words associated with how a Board works but, like so much of GCP’s ‘family’, this was not a typical board. Because GCP was hosted by CIMMYT, the Board did not have to deal with any policy issues; that was the responsibility of the Consortium Committee. As Andrew explains, “Our role was to advise on and help with decision-making and implementation, which was great as we were able to focus on the Programme’s science and people.”

Andrew has been impressed by what GCP has been able to achieve in its relatively short lifespan in comparison with other research programmes. “I think this programme has demonstrated that a relatively modest amount of money used intelligently can move with the times and help identify areas of potential benefit.”

Developing capacity and leadership in Africa

As GCP’s focus shifted from exploration and discovery to application and impact between Phases I and II, project leadership shifted too. More and more projects were being led by developing-country partners.

Harold Roy-Macauley, GCP Board member and Executive Director of the West and Central African Council for Agricultural Research and Development (WECARD), advised GCP about how to develop capacity, community and leadership among African partners so that products would reach farmers.

“The objective was to make sure that we were influencing development within local research communities,” says Harold. “GCP has played a very important role in creating synergies between the different institutions in Africa. Bringing the right people together, who are working on similar problems, and providing them with the opportunity to lead, has brought about change in the way researchers are doing research.”

In the early years of the Programme, only about 25 percent of the research budget was allocated to research institutes in developing countries; this figure was more than 50 percent in 2012 and 2013.

Jean-Marcel echoes Harold’s comments: “To make a difference in rural development – to truly contribute to improved food security through crop improvement and incomes for poor farmers – we knew that building capacity had to be a cornerstone of our strategy,” he says. Throughout its 10 years, GCP invested 15 percent of its resources in developing capacity.

“Providing this capacity has enabled people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying. It is very rewarding to see people from developing countries growing and becoming leaders,” says Jean-Marcel.

“For me, seeing developing-country partners come to the fore and take the reins of project leadership was one of the major outcomes of the Programme. Providing them with the opportunity, along with the appropriate capacity, allowed them to build their self-confidence. Now, many have become leaders of other transnational projects.”

Emmanuel Okogbenin and Chiedozie Egesi, two plant breeders at Nigeria’s National Root Crops Research Institute (NRCRI), are notable examples. They are leading an innovative new project using marker-assisted breeding techniques they learnt during GCP projects to develop higher-yielding, stress-tolerant cassava varieties. For this project, they are partnering with the Bill & Melinda Gates Foundation, Cornell University in the USA, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crops Resources Research Institute (NaCRRI).

Chiedozie says this would not have been possible without GCP helping African researchers to build their profiles. “GCP helped us to build an image for ourselves in Nigeria and in Africa,” he says, “and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Nigerian cassava farmer.

A ‘sweet and sour’ sunset

Photo: Daryl Marquardt/Flickr (Creative Commons)

Maize at sunset.

Jean-Marcel defined GCP’s final General Research Meeting in Thailand in 2014 as a ‘sweet-and-sour experience’.

Summing up the meeting, Jean-Marcel said, “It was sour in terms of GCP’s sunset, and sweet in terms of seeing you all here, sharing your stories and continuing your conversations with your partners and communities.”

From the outset, GCP was set up as a time-bound programme, which gave partners specific time limits and goals, and the motivation to deliver products. However, much of the research begun during GCP projects will take longer than 10 years to come to full fruition, so it was important for GCP to ensure that the research effort could be sustained and would continue to deliver farmer-focused outcomes.

During the final two years of the Programme, the Executive Board, Consortium Committee and Management Team played a large role in ensuring this sustainability through a thoroughly planned handover.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR Research Programs,” says Jean-Marcel.

One of the largest challenges was to ensure the continuity and future success of the Integrated Breeding Platform (IBP). IBP is a web-based, one-stop shop for information, tools and related services to support crop breeders in designing and carrying out integrated breeding projects, including both conventional and marker-assisted breeding methods.

While there are already a number of other analytical and data management breeding systems on the market, IBP combines all the tools that a breeder needs to carry out their day-to-day logistics, plan crosses and trials, manage and analyse data, and analyse and refine breeding decisions. IBP is also unique in that it is geared towards supporting breeders in developing countries – although it is already proving valuable to a wide range of breeding teams across the world. The Platform is set up to grow and improve as innovative ideas emerge, as users can develop and share their own tools.

Beyond the communities and relationships fostered by GCP community, Jean-Marcel sees IBP as the most important legacy of the Programme. “I think that the impact of IBP will be huge – so much larger than GCP. It will really have impact on how people do their business, and adopt best practice.”

While the sun is setting on GCP, it is rising for IBP, which is in an exciting phases as it grows and seeks long-term financial stability. The Platform is now independent, with its headquarters hosted at CIMMYT, and has established a number of regional hubs to provide localised support and training around the world, with more to follow.

It is envisaged that IBP will be invaluable to researchers in both developing and developed countries for many years to come, helping them to get farmers the crop varieties they need more efficiently. IBP is also helping to sustain some of the networks that GCP built and nurtured, as it is hosting the crop-specific Communities of Practice established by GCP.

2014 may be the end of GCP’s story but its legacy will live on. It will endure, of course, in the Programme’s scientific achievements – for many crops, genetic research and the effective use of genetic diversity in molecular breeding are just beginning, and GCP has helped to kick-start a long and productive scientific journey – and in the valuable tools brought together in IBP. And most of all, GCP’s character, communities and spirit will live on in all those who formed part of the GCP family.

For Chiedozie Egesi, the partnerships fostered by GCP have changed the way he does research: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons.

Fellow cassava breeder Elizabeth Parkes of Ghana agrees that GCP’s impact will be a lasting one: “All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

More links

Photo: E Hermanowicz/Bioversity International

Cowpea seeds dried in their pods.

Oct 192015
 

 

Photo: ICRISAT

Precious sorghum seed diversity.

Humans are a protective species. We like to hoard away our precious items in vaults and safes made of concrete and steel, safe from thieves and catastrophes.

One not-so-obvious precious item, which many people take for granted, is seed. Without seeds, farmers would not be able to grow the grains, legumes, vegetables and fruits we eat.

For centuries, farmers have harvested seeds to store and protect for planting the following year. Most of the time, farmers will only keep seeds harvested from plants that have excelled in their environment – that have produced high yields or have favourable qualities such as larger or tastier grain. This simple iterative process of selecting primarily for high yields means that many crops today are closely related genetically, which can make them more vulnerable to evolving diseases and pests.

Without diversity, a severe epidemic can completely wipe out a farmer’s crop — and even a whole region’s crop. One of the best-known historical examples of just such a disastrous crop failure is the Irish Potato Famine of the 19th century, when potato blight disease caused extensive death, human suffering and social upheaval. A number of crops around the world are in similar danger today, including wheat, threatened by the Ug99 strain of stem rust disease, to which almost all the world’s wheat is susceptible, and cassava, menaced by African cassava mosaic virus (ACMV).

The solution – genetic diversity

Plant breeders are looking at ways to increase diversity among cultivated crops, mitigating the risks of pests and diseases and introducing genes that help plants thrive in their local environments. To do this they are looking for useful traits in traditional cultivars, related species and wild ancestors. Such traits may include tolerance to drought, heat, and poor soils as well as insect and disease resistance. Breeders cross these donor parents with high-yielding elite breeding lines. The resulting new varieties have all the preferred traits of their parents and none of the deficiencies.

The genetic diversity of crops and their wild relatives is held by gene banks. There are thousands of gene banks worldwide, which collect and store seeds from hundreds of thousands of varieties. Breeders and researchers submit seed and tissue of wild and cultivated varieties as well as of lines of new varieties they are trying to breed.

Photo: IRRI

Staff hard at work in the medium-term storage room of the International Rice Genebank at IRRI.

“For years, gene banks were primarily repositories, but with genetics evolving, and its subsequent application in plant breeding growing over the past 10 years, breeders and geneticists are now mining gene banks for wild and exotic species that might have favourable genes for desired traits,” explains Ruaraidh Sackville Hamilton, evolutionary biologist and head of the International Rice Genebank maintained by the International Rice Research Institute (IRRI) at its headquarters in The Philippines.

Sifting through all these gene-bank collections for plants with desired traits is challenging for breeders, even for traits that are easy to select for through visual screening. For example, Ruaraidh says the rice collection held at the International Rice Genebank contains more than 117,000 different types of rice, or accessions.

In recognition of this challenge, the initial rationale of the CGIAR Generation Challenge Programme’s (GCP) genetic stocks activity was to make the diversity in gene banks more easily accessible and practical for the study – and application – of genetic diversity.

What is a genetic stock? “A genetic stock is a line that has been created by modern breeders and researchers, using conventional technologies, specifically to address some specified scientific purpose, typically for gene discovery,” explains Ruaraidh Sackville Hamilton, evolutionary biologist and head of the International Rice Genebank maintained by the International Rice Research Institute (IRRI). This definition includes the notion of perpetuation (a ‘line’), which is central to genetic stocks: either the materials are genetically stabilised through sexual reproduction, or they can be distributed through vegetative propagation.

Taking stock of genetic stocks

The first step towards making diversity accessible to breeders was to develop reference sets, representing as much genetic diversity as possible within a small proportion of gene bank accessions, selected through pedigree and molecular marker information.

“Reference sets reduce the number of choices that breeders have to search through, from thousands down to a few hundred,” says Jean Christophe Glaszmann, a plant geneticist at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), who held a managing role at GCP between 2004 and 2010, overseeing much of the reference-set work as GCP’s Subprogramme Leader on Genetic Diversity during GCP’s Phase I.

“A reference set represents the whole diversity found in the collections. Breeders can then use this sample to make crosses with their preferred varieties to try and integrate specific genes from the reference-set lines into those varieties.”

During the first phase of GCP (2004–2008), the Programme focused on identifying and characterising reference sets, each of roughly 300 lines, for banana, barley, cassava, chickpea, coconut, common bean, cowpea, faba bean, finger millet, foxtail millet, groundnut, lentil, maize, pearl millet, pigeonpea, potato, rice, sorghum, sweetpotato, wheat and yam. For most crops phenotyping data – information about physical plant traits – were also being made available for the reference sets, helping researchers to select material of interest for breeding.

Photo: P Kosina/CIMMYT

A trainee at the International Maize and Wheat Improvement Center (CIMMYT) shows off diverse wheat ears, a small sample of the thousands of different lines found in the centre’s gene bank.

A further aspect of the work was the development of data-kits, which included molecular markers used to genotype and verify the sets. These kits allow plant scientists to assess and compare the diversity of their own collections with that of the reference sets, thus facilitating the introduction of new diversity in their prebreeding programmes.

Jean Christophe says the reference sets and data-kits were pivotal to the success of GCP’s molecular-breeding projects as they allowed researchers in different institutes to simultaneously work on the same genetic materials. “The sets served as consistent reference material that everybody collaborating on the project could analyse,” he explains. “Some of these collaborations involved hundreds of researchers, particularly those projects seeking to map genomes and identify genes.”

During the second phase of GCP (2009–2014), the reference sets for GCP’s Phase II target crops (cassava, chickpea, common bean, cowpea, groundnut, maize, rice, sorghum and wheat) were thoroughly phenotyped under different environments, including biotic and abiotic stresses. Jean Christophe says this work helped to identify new alleles (alternative forms of a gene or genetic locus) associated with desired traits that could be used for breeding purposes. Reference sets have been used successfully to identify and use new plant material in breeding programmes to improve various traits, particularly disease resistance and even more complex traits such as drought tolerance in cassava, chickpea, cowpea, maize, sorghum and wheat.

Broadening groundnut’s genetic base to prevent disease

Photo: V Meadu/CCAFS

A farmer in Senegal shows off her groundnut crop, almost ripe for harvest.

Another objective of GCP’s genetic stocks activity was to create new diversity within domesticated cultivated crops that have narrow genetic diversity, such as groundnut.

“The groundnuts we grow today are not too dissimilar to the ones that were first created naturally five to six thousand years ago,” says David Bertioli, a plant geneticist at the University of Brasília, Brazil. “This means that they are genetically very similar and have a narrow genetic base – the narrowest of any cultivated crop.”

This genetic similarity means that all cultivated groundnuts are very susceptible to diseases, particularly leaf spot, requiring expensive agrochemicals, especially fungicides. Without agrochemicals, which smallholder farmers in Africa and Asia often cannot afford, yields can be very low.

David says groundnut breeders always recognised the need to increase diversity, but because cultivated groundnuts have had a narrow base for so long, they became radically different from their wild relatives, making it very difficult to successfully cross wild species with cultivated species.

New genetic diversity is created through recombination, that is, through crossing contrasting varieties to create novel lines. Researchers can study these recombinants to identify genes associated with desired traits or use them in further crosses to develop new varieties.

“One of our first jobs was to make wild-species recombinants to trace out the relatedness of the wild-species genomes,” says David. “Once we could see the relatedness, we could see which wild species we could cross with cultivated lines. We had to do a lot of these crosses, but we eventually started to broaden the genetic diversity of the cultivated lines.”

David says this painstaking work, carried out under GCP, also formed the platform for sequencing the groundnut genome for the first time.

“That gave us an even greater understanding of the genetic structure, which is laying the groundwork for new varieties with traits such as added disease resistance and drought tolerance,” says David.

An additional key outcome of the groundnut aspect of the Legumes Research Initiative was developing ‘wild × domesticated’ synthetic lines, which are being crossed with domesticated groundnut varieties in Malawi, Niger, Senegal and Tanzania to introduce higher drought tolerance.

Photo: C Schubert/CCAFS

Like many areas of Africa struck by climate change, this village in Tanzania is suffering the effects of drought, with temperature increases and increasingly unpredictable rainfall.

Genetic gain by exploiting genetic stocks

The genetic stocks activity has generated a large and diverse array of resources across GCP’s target crops, not just for groundnut.

Recombinant inbred lines (RILs) incorporating specific traits of interest – particularly drought tolerance – have been developed for cowpea, maize, rice, sorghum and wheat. RILs are stabilised genetic stocks, created over several years by crossing two inbred lines followed by repeated generations of sibling mating to produce inbred lines that are genetically identical. These can then be used to discover and verify the role of particular genes and groups of genes associated with desired traits.

Near-isogenic lines (NILs) are RILs that possess identical genetic codes, except for differences at a few specific genetic loci. This enables researchers to evaluate particular genes and groups of genes that they may want to incorporate into breeding lines, particularly genes that have come from plants that otherwise do not perform well agronomically, such as wild relatives or older varieties. Sorghum NILs incorporating the AltSB locus for aluminium tolerance are being tested in Burkina Faso, Mali and Niger on problematic acid soils.

Multiparent advanced generation intercross (MAGIC) populations are a form of recombinants developed from crossing several parental lines from different genetic origins and, in some cases, exotic backgrounds to maximise the mix of genes from the parental lines in the offspring. MAGIC populations have been developed for chickpea, cowpea, rice and sorghum, and are being developed for common bean. Selected parental lines have been used to combine elite alleles for simple traits such as aluminium tolerance in sorghum and submergence tolerance in rice, as well as for complex traits such as drought or heat tolerance.

The further evaluation and use of the genetic stocks stemming from GCP-supported projects, as well as the generation of new genetic stocks, will continue beyond GCP through CGIAR’s Research Programs as well as through those institutes and national breeding programmes associated with GCP. There will be a continuing and evolving need to identify new genes associated with desired traits to improve cultivated germplasm.

Photo: K Zaw/Bioversity International

Transplanting rice plants in Myanmar.

Sustaining genetic stocks into the future

Sustainability of genetic stocks has always been an issue, as stocks are generally not managed in a centralised way but are left under the direct responsibility of the scientists who developed them. These resources have therefore usually been handled in a highly ad hoc manner.

Because of high staff turnover in CGIAR Centers and breeding programmes in developing countries, and also because their management is neither centralised nor coordinated, these resources are also often lost as staff move from one organisation to another.

Although different genetic resources require different management protocols and storage timelines, the idea that gene bank curators take on the management of genetic stocks was proposed several years ago. For Centers such as IRRI, this is already a reality – for at least some of the genetic resources developed.

However, with the growing popularity of tapping into the rich diversity in gene banks that GCP’s genetic stocks activity has helped drive, gene bank supervisors such as Ruaraidh Sackville Hamilton are concerned about how genetic stocks will be sustained.

“The more popular molecular breeding and genetic stock become, the more funds we need to help us curate and disseminate them,” says Ruaraidh. He proposes to recover costs for managing genetic resources through a chargeback system on a two-tier scale, with non-profit organisations receiving stock at lower costs than commercial organisations. “Such a system would be sustainable and reduce the burden on gene bank institutes,” he says.

Still, the costs are of concern to institutes, particularly CGIAR Centers, which maintain most of the world’s plant crop gene banks.

CGIAR, a global partnership that unites 15 research Centres, including IRRI, is engaged in research for a food-secure future. CGIAR also created GCP. “CGIAR’s main priority is to conserve genetic resources for all humankind,” says Dave Hoisington, Senior Research Scientist and Program Director at the University of Georgia in the US. He was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT) (both CGIAR Centers) and Chair of the GCP Consortium Committee.

“In both of the CGIAR Centers I worked in,” says Dave, “we always maintained the position that if the Center were to shut down, the last thing we’d do would be to turn out the lights of the gene bank. Even when we had funding cuts, we would never cut the budget for the gene bank.”

Photo: X Fonseca/CIMMYT

At work in the maize active collection in the gene bank at CIMMYT, which keeps maize and wheat diversity in trust for the world.

New programme to fund crop diversity

To alleviate some of the funding burden on CGIAR Centers and free up more money to use in research and development, CGIAR created a new CGIAR Research Program for Managing and Sustaining Crop Collections. The comprehensive five-year programme is managed by the Crop Trust (formerly Global Crop Diversity Trust).

“The Trust is a financial mechanism to raise an endowment, to ensure the conservation and availability of crop diversity,” says Charlotte Lusty, Genebank Programmes Coordinator at the Global Crop Diversity Trust. “The new programme is an extension of the Trust’s work. We aim to raise a USD 500 million endowment by 2016. The interest from this will be divided between the CGIAR Centers to cover all their long-term conservation operations.”

The new programme is also reviewing how gene banks within CGIAR are being managed, with a view to developing a quality management system, which it hopes will make gene banks run more efficiently. Charlotte says it is also encouraging stronger gene banks, such as IRRI and CIMMYT, to lend their expertise and experience to smaller gene banks so they can meet and build on their management quality.

Dave Hoisington believes that the new programme will provide CGIAR’s gene banks with greater capacity and make them even more attractive for researchers wanting to make use of their rich diversity.

Photo: IRRI

A wide diversity of rice seed from the collection of the International Rice Genebank at IRRI.

Looking forward 30 years

Tapping into new diversity was really at the heart of GCP, and was a major, if not the primary, rationale for its establishment. Over its 10-year lifespan, has invested almost USD 28 million, or 18 percent of its budget, in developing genetic stocks, both reference sets and recombinants, for over 20 different crops.

Although these products don’t directly benefit farmers, they do indirectly help by significantly increasing breeding efficiency.

“All this research is fairly new and I am amazed, as a geneticist and plant breeder, by how far we’ve come since GCP started in 2004,” says David Bertioli.

“What we’ve been able to do in groundnut – that is, broaden the genetic base – hasn’t occurred naturally or through conventional breeding for thousands of years. And we’ve been able to do it in less than ten years.”

David recognises that the true value of the research will only be realised when new disease-resistant varieties are available for farmers to grow, which may be in five to seven years. “Only then will we be able to look back and consider the worth of all the hard work and cooperation that went into developing these precious varieties.”

GCP’s genetic stock activities have generated a large and diverse array of resources. These resources lay the foundation for further genetic stock development and will aid in researchers’ quests to tap into genetic diversity well into the future.

More links

Oct 162015
 
Photo: A Paul-Bossuet/ICRISAT

Pigeonpea farmers in India.

The tagline of the CGIAR Generation Challenge Programme (GCP) is ‘Partnerships in modern crop breeding for food security’. One of GCP’s many rewarding partnerships was with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

The Institute was a source of valuable partnerships with highly regarded agricultural scientists and researchers, as well as of germplasm and genetic resources from its gene bank. With assistance from GCP, these resources have enabled scientists and crop breeders throughout Africa, Asia and Latin America to achieve crop improvements for chickpea, groundnut, pearl millet, pigeonpea and sorghum, all of which are staple crops that millions of people depend upon for survival.

“The philosophy of GCP at the start was to tap into and use the genomic recourses we had in our gene banks to develop ICRISAT’s and our partners’ breeding programmes,” says Pooran Gaur, GCP’s Product Delivery Coordinator for chickpeas, and Principal Scientist for chickpea genetics and breeding at ICRISAT.

ICRISAT’s gene bank is a global repository of crop genetic diversity. It contains 123,023 germplasm accessions – in the form of seed samples – assembled from 144 countries, making it one of the largest gene banks in the world.

The collection serves as insurance against genetic loss and as a source of resistance to diseases and pests, tolerance to climatic and other environmental stresses, and improved quality and yield traits for crop breeding.

Pooran says the ultimate goal of the GCP–ICRISAT partnership was to use the resources in the gene bank to develop drought-tolerant varieties that would thrive in semi-arid conditions and to make these varieties available to farmers’ fields within a decade.

Photo: S Kilungu/CCAFS

Harvesting sorghum in Kenya.

Setting a foundation for higher yielding, drought-tolerant chickpeas

Pooran was involved with GCP from its beginning in 2004 and was instrumental in coordinating chickpea projects.

Photo: ICRISAT

Chickpea harvest, India.

“GCP got things started; it set a foundation for using genomic resources to breed chickpeas,” says Pooran. During Phase I of GCP (2004–2009), ICRISAT was involved in developing reference sets for chickpeas and developing mapping populations for drought-tolerance traits. It also collaborated with 19 other international research organisations to successfully sequence the chickpea genome in 2013 – a major breakthrough that paved the way for the development of even more superior chickpea varieties to transform production in semi-arid environments.

The International Chickpea Genome Sequencing Consortium, led by ICRISAT and partly funded by GCP, identified more than 28,000 genes and several million genetic markers. Pooran says these are expected to illuminate important genetic traits that may enhance new varieties.

The trait of most interest to many chickpea breeders is drought tolerance. In recent years, droughts in the south of India, the largest producer of chickpeas, have reduced yields to less than one tonne per hectare. Droughts have also diminished chickpea yields in Ethiopia and Kenya, Africa’s largest chickpea producers and exporters to India. While total global production of chickpeas is around 8.6 million tonnes per year, drought causes losses of around 3.7 million tonnes worldwide.

Photo: ICRISAT

Putting it to the test: Rajeev Varshney (left, see below) and Pooran Gaur (right) inspecting a chickpea field trial.

Pooran says the foundation work supported by GCP was particularly important for identifying drought-tolerance traits. “We had identified plants with early maturing traits. This allowed us to develop chickpea varieties that have more chance of escaping drought when cereal farmers produce a fast-growing crop in between the harvest and planting of their main crops,” he says.

New varieties that grow and develop more quickly are expected to play a key role in expanding the area suitable for chickpeas into new niches where the available crop-growing seasons are shorter.

“In southern India now we are already seeing these varieties growing well, and their yield is very high,” says Pooran. “In fact, productivity has increased in the south by about seven to eight times in the last 10–12 years.”

Developing capacity by involving partners in Kenya and Ethiopia

Photo: GCP

Monitoring the water use of chickpea plants in experiments at Egerton University, Njoro, Kenya.

As part of GCP’s Tropical Legumes I project (TLI), incorporated within its Legume Research Initiative (RI), ICRISAT partnered with Egerton University in Kenya and the Ethiopian Institute of Agricultural Research (EIAR) to share breeding skills and resources to produce higher yielding, drought-tolerant chickpea varieties.

“When we first started working on this project in mid-2007, our breeding programme was very weak,” says Paul Kimurto of the Faculty of Agriculture at Egerton University, who was Lead Scientist for chickpea research in the TLI project. “We have since accumulated a lot of germplasm, a chickpea reference set and a mapping population, all of which have greatly boosted our breeding programme.”

Paul says that with this increased capacity, his team in Kenya had released six new varieties of chickpea in the five years prior to GCP’s close at the end of 2014, and were expecting more to be ready within in the next three years.

In fields across Ethiopia, meanwhile, the introduction of new varieties has already brought a dramatic increase in productivity, with yields doubling in recent years, according to Asnake Fikre, Crop Research Directorate Director for EIAR.

Varieties like the large-seeded and high-valued kabuli have presented new opportunities for farmers to earn extra income through the export industry, and indeed chickpea exports from eastern Africa have substantially increased since 2001. This has transformed Ethiopia’s chickpeas from simple subsistence crop to one of great commercial significance.

Photo: S Sridharan/ICRISAT

This chickpea seller in Ethiopia says that kabuli varieties are becoming more popular.

Decoding pigeonpea genome

Two years prior to the decoding of the chickpea genome, GCP’s Director Jean-Marcel Ribaut announced that a six-year, GCP-funded collaboration led by ICRISAT had already sequenced almost three-quarters of the pigeonpea genome.

“This will have significant impact on resource-poor communities in the semi-arid regions, because they will have the opportunity to improve their livelihoods and increase food availability,” Jean-Marcel stated in January 2012.

Pigeonpea, the grains of which make a highly nutritious and protein-rich food, is a hardy and drought-tolerant crop. It is grown in the semi-arid tropics and subtropics of Asia, Africa, the Americas and the Caribbean. This crop’s prolific seed production and tolerance to drought help reduce farmers’ vulnerability to potential food shortages during dry periods.

Photo: B Sreeram/ICRISAT

A pigeonpea farmer in his field in India.

The collaborative project brought together 12 participating institutes operating under the umbrella of the International Initiative for Pigeonpea Genomics. The initiative was led by Rajeev K Varshney, GCP’s Genomics Theme Leader and Director of the Center of Excellence in Genomics at ICRISAT. Other participants included BGI in Shenzhen, China; four universities; and five other advanced research entities, both private and public. The Plant Genome Research Program of the National Science Foundation, USA, also funded part of this research.

“We were able to assemble over 70 percent of the genome. This was sufficient to enable us to change breeding approaches for pigeonpea,” says Rajeev. “That is, we can now combine conventional and molecular breeding methods – something we couldn’t do as well before – and access enough genes to create many new pigeonpea varieties that will effectively help improve the food security and livelihoods of resource-poor communities.”

Pigeonpea breeders are now able to use markers for genetic mapping and trait identification, marker-assisted selection, marker-assisted recurrent selection and genomic selection. These techniques, Rajeev says, “considerably cut breeding time by doing away with several cropping cycles. This means new varieties reach dryland areas of Africa and Asia more quickly, thus improving and increasing the sustainability of food production systems in these regions.”

Several genes, unique to pigeonpea, were also identified for drought tolerance by the project. Future research may find ways of transferring these genes to other legumes in the same family – such as soybean, cowpea and common bean – helping these crops also become more drought tolerant. This would be a significant asset in view of the increasingly drier climates in these crops’ production areas.

“We cannot help but agree with William Dar, Director General of ICRISAT, who observed that the ‘mapping of the pigeonpea genome is a breakthrough that could not have come at a better time’,” says Jean-Marcel.

Photo: ICRISAT

East African farmers inspect pigeonpea at flowering time.

Securing income-generating groundnut crops in Africa

Groundnut, otherwise known as peanut, is one of ICRISAT’s mandate crops. Groundnuts provide a key source of nutrition for Africa’s farming families and have the potential to sustain a strong African export industry in future.

“The groundnut is one of the most important income-generating crops for my country and other countries in East Africa,” says Patrick Okori, who is a groundnut breeder and Principal Scientist with ICRISAT in Malawi and who was GCP’s Product Delivery Coordinator for groundnuts.

“It’s like a small bank for many smallholder farmers, one that can be easily converted into cash, fetching the highest prices,” he says

It is the same in West Africa, according to groundnut breeder Issa Faye from the Institut Sénégalais de Recherches Agricoles (ISRA), who has been involved in GCP since 2008. “It’s very important for Senegal,” he says. “It’s the most important cash crop here – a big source of revenue for farmers around the country. Senegal is one of the largest exporters of groundnut in West Africa.”

In April 2014, the genomes of the groundnut’s two wild ancestral parents were successfully sequenced by the International Peanut Genome Initiative – a multinational group of crop geneticists, including those from ICRISAT, who had been working in collaboration for several years.

The sequencing work has given breeders access to 96 percent of all groundnut genes and provided the molecular map needed to breed drought-tolerant and disease-resistant higher yielding varieties, faster.

Photo: S Sridharan/ICRISAT

Drying groundnut harvest, Mozambique.

“The wild relatives of a number of crops contain genetic stocks that hold the most promise to overcome drought and disease,” says Vincent Vadez, ICRISAT Principal Scientist and groundnut research leader for GCP’s Legumes Research Initiative. And for groundnut, these stocks have already had a major impact in generating the genetic tools that are key to making more rapid and efficient progress in crop science

Chair of GCP’s Consortium Committee, David Hoisington – formerly ICRISAT’s Director of Research and now Senior Research Scientist and Program Director at the University of Georgia – says the sequencing could be a huge step forward for boosting agriculture in developing countries.

“Researchers and plant breeders now have much better tools available to breed more productive and more resilient groundnut varieties, with improved yields and better nutrition,” he says.

These resilient varieties should be available to farmers across Africa within a few years.

Supporting key crops in West Africa

Photo: N Palmer/CIAT

Harvested pearl millet and sorghum in Ghana.

With a focus on the semi-arid tropics, ICRISAT has been working closely with partners for 30 years to improve rainfed farming systems in West Africa. One sorghum researcher who has been working on the ground with local partners in Mali since 1998 is Eva Weltzien-Rattunde. She is an ICRISAT Principal Scientist in sorghum breeding and genetic resources, based in Mali, and was Principal Investigator for GCP’s Sorghum Research Initiative.

Eva and her team collaborated with local researchers at Mali’s Institut d’Economie Rurale (IER) and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development) on a project to test a novel molecular-breeding approach: backcross nested association mapping (BCNAM). Eva says this method has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

In another project, under GCP’s Comparative Genomics Research Initiative, Eva and her team are using molecular markers developed through the RI to select for aluminium-tolerant and phosphorus-efficient varieties and validating their performance in field trials across 29 environments in three countries in West Africa.

“Low phosphorus availability is a key problem for farmers on the coast of West Africa, and breeding phosphorus-efficient crops to cope with these conditions has been a main objective of ICRISAT in West Africa for some time,” says Eva.

“We’ve had good results in terms of field trials. We have at least 20 lines we are field testing at the moment, which we selected from 1,100 lines that we tested under high and low phosphorous conditions.” Eva says that some of these lines could be released as new varieties as early as 2015.

Ibrahima Sissoko, a data curator working with Eva’s team at ICRISAT in Mali, also adds that the collaborations and involvement with GCP have increased his and other developing country partners’ capacity in data management and statistical analysis, as well as helping to expand their network. “I can get help from other members of my sorghum community,” he says.

In summing up, Eva says: “Overall, we feel the GCP partnerships are enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties that will help farmers and feed the ever-growing population in West Africa.”

Photo: A Paul-Bossuet/ICRISAT

Enjoying a tasty dish of sorghum.

Tom Hash, millet breeder and Principal Scientist at ICRISAT and GCP Principal Investigator for millet, shares Eva’s sentiments on GCP and the impact it is having in West Africa.

Between 2005 and 2007, GCP invested in genetic research for millet, which is the sixth most important cereal crop globally and a staple food (along with sorghum) in Burkina Faso, Chad, Eritrea, Mali, Niger, northern Nigeria, Senegal and Sudan.

With financial support from GCP, and drawing on lessons learnt from parallel GCP genetic research, including in sorghum and chickpea, ICRISAT was able to mine its considerable pearl millet genetic resources for desirable traits.

Hari D Upadhyaya, Principal Scientist and Head of Genebank at ICRISAT in India, led this task to develop and genotype a ‘composite collection’ of pearl millet. The team created a selection that strategically reduced the 21,594 accessions in the gene bank down to just 1,021. This collection includes lines developed at ICRISAT and material from other sources, with a range of valuable traits including tolerance to drought, heat and soil salinity and resistance to blast, downy mildew, ergot, rust and smut, and even resistance to multiple diseases.

The team then used molecular markers to fingerprint the DNA of plants grown from the collection.

“GCP supported collaboration with CIRAD, and our pearl millet breeding teams learnt how to do marker-based genetic diversity analysis,” says Tom. “This work, combined with the genomic resources work, did make some significant contributions to pearl millet research.”

Over 100 new varieties of pearl millet have recently been developed and released in Africa by the African Centre for Crop Improvement in South Africa, another developing country partner of ICRISAT and GCP. Tom says the initial genetic research was pivotal to this happening.

Photo: N Palmer/CIAT

A Ghanaian farmer examines his pearl millet harvest.

From poverty to prosperity through partnerships

Patrick Okori says that GCP has enabled his organisation to make a much stronger contribution to the quality of science.

“Prior to GCP, ICRISAT was already one of the big investors in legume research, because that was its mandate. The arrival of GCP, however, expanded the number of partners that ICRISAT had, both locally and globally, through the resources, strategic meetings and partnership arrangements that GCP provided as a broad platform for engaging in genomic research and the life sciences.”

This expansion of ICRISAT, facilitated by GCP, also enabled researchers from across the world and in diverse fields to interact in ways they had never had the opportunity to before, says Vincent Vadez.

“GCP has allowed me to make contact with people working on other legumes, for example,” he says. “It has allowed us to test hypotheses in other related crops, and we’ve generated quite a bit of good science from that.”

Pooran Gaur has had a similar experience with his chickpea research at ICRISAT.

“GCP provided the first opportunity for us to work with the bean and cowpea groups, learning from each other. That cross-learning from other crops really helped us. You learn many things working together, and I think we have developed a good relationship, a good community for legumes now.”

This community environment has made the best use of an unusual variety of skills, knowledge and resources, agrees Rajeev Varshney.

“It brought together people from all kinds of scientific disciplines – from genomics, bioinformatics, biology, molecular biology and so on,” he says. “Such a pooling of complementary expertise and resources made great achievements possible.”

More links

Photo: A Paul-Bossuet/ICRISAT

Man and beast team up to transport chickpeas in Ethiopia.

 

Oct 012015
 

 

Photo: C. Schubert/CCAFS

A farmer from Dodoma, Tanzania, an area where climate change is causing increasing heat and drought. Groundnut is an important crop for local famers, forming the basis of their livelihood together with maize and livestock.

If you don’t live with poor people, then your science is of no use to poor people. This is the very clear sentiment of Omari Mponda, one of Tanzania’s top groundnut researchers.

“Sometimes people do rocket science. But that’s not going to help the poor,” says Omari. “Scientists in labs are very good at molecular markers, but markers by themselves will not address the productivity on the ground. You cannot remove poverty through that alone.”

Omari is the Zonal Research Coordinator and plant breeder at Tanzania’s Agricultural Research Institute at Naliendele (ARI–Naliendele).

The passion and dedication of Omari and his colleagues at this East African research centre were the reason why, between 2008 and 2014, the CGIAR Generation Challenge Programme (GCP) provided funding for legumes research at ARI–Naliendele that especially targeted drought, as part of the Tropical Legumes I project. This project supplied national institutes across Africa, Asia and Latin America with training and infrastructure improvements that enabled local researchers to do more advanced plant science that could make a real difference to farmers.

Researchers like Omari, who are working on the ground in developing countries, are a crucial part of the global quest to develop solutions for future food security and improved livelihoods in these countries.

GCP set out to enhance the plant-breeding skills and capacity of researchers in developing nations, such as Tanzania, so that they can develop their own crop varieties that will cope with increasingly extreme drought conditions.

Photo: C Schubert/CCAFS

A farmer in dryland Tanzania shows off his groundnut crop.

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work and being given the chance to do the how.”

Hannibal, under his GCP remit, was asked to visit the research sites of GCP-funded projects at research centres and stations across Africa, to identify those where effective research might be hindered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 target research sites – in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania.

Photo: AgCommons

Hannibal Muhtar (left) and Omari Mponda at ARI–Naliendele.

Two of the locations chosen for some practical empowerment were in Tanzania, namely the ARI research sites at Naliendele and Mtwara, where simple infrastructure improvements like irrigation tubing and portable weather stations have made a surprising difference to the capacity of local researchers.

In developing countries like Tanzania, the obstacles to achieving research objectives are often quite mundane in nature: a faulty weather station, the lack of irrigation systems, or fields ravaged by weeds and in dire need of rehabilitation. Yet such factors compromise brilliant research.

Even a simple lack of fencing commonly results not only in equipment being stolen, but also in precious experimental crops being stomped on by roaming cattle and wild animals such as boars, monkeys, hippopotamuses and hyenas; this also poses a serious threat to the safety of field staff.

“The real challenge lies not in the science, but rather in the real nuts and bolts of getting the work done in local field conditions,” Hannibal explains.

He says: “If GCP had not invested in research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.”

Bridging the gap between the lab and farmers

Since 2008, researchers at ARI–Naliendele in Tanzania have been working together with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to identify suitable groundnut breeding materials to help the country’s farmers improve crop yields. Currently, yields are at less than one-third of their potential.

“We are bridging the big science to the poor people, to see the real issues we should be addressing. You can have a very good resistant variety, but maybe that variety is not liked by farmers,” Omari says.

He recalls a case where one farmer who helped with variety selection for international research had identified a groundnut variety that was resistant to disease, but the shells were too difficult to crack.

“So that variety won’t help the poor, because he [the farmer] is not able to open the shell. So the breeder had to rethink, what trait could loosen, or make it easier to shell?” recounts Omari.

Photo: N Palmer/CIAT

Shelled groundnuts on sale in Ghana.

The mission of the 10-year GCP was to use genetic diversity and advanced plant science to improve crops in developing countries. More than 200 partners were involved in the programme, including members of the international CGIAR group plus academia and regional and national research programmes.

National institutes like Tanzania’s ARI–Naliendele, established in 1970, are essential linchpins between advanced research centres in developed countries and poor farmers around the world facing the day-to-day realities of climate change and plant pests and diseases.

“If each organisation works in isolation, they will spend a lot of money developing new varieties but nothing will change on the ground. So in actually working together through programmes like the GCP, we can see some change happening,” says Omari.

Through the GCP project, Tanzania’s groundnut researchers received 300 reference-set lines from ICRISAT, which were then phenotyped over three years (2008–2010) for both drought tolerance and disease resistance in order to select the most useful lines under local conditions. To help with this process, Tanzanian scientists and technicians travelled to ICRISAT headquarters in India, where they were trained in phenotyping: that is, how to identify and measure observable characteristics – in this case, traits relating to the plants’ abilities to cope with drought and disease.

After the researchers identified the best varieties, these were provided to participating farmers so they could trial them in their fields for selection in 2011–2012. Five new varieties have since been released to Tanzanian farmers based on this collaboration between ARI and ICRISAT.

Photo: A Masciarelli/FAO

A young groundnut plant.

Things are speeding up in Tanzania

For ARI–Naliendele, the laboratory and field infrastructure provided by GCP funding has helped accelerate the work of local researchers and breeders. It has been transformative for Tanzanian scientists, according to Omari.

“For example, irrigation is very costly, but with the GCP support for an irrigation system, we can fast track our work – we can come up with new varieties in a much shorter period. That is something that will change our lives,” says Omari.

“Groundnut has a very low multiplication ratio, so if you plant one kilogram, you will get only 10 kilograms next year,” he explains. “Ten kilograms in 12 months is not enough. With irrigation, it means that we can have at least two or three crops within a season. Some of the varieties we are developing can be fast tracked to the end users. The speed of getting varieties from the research to the farmers has increased by maybe three times.”

Photo: D Brazier/IWMI

Washing harvested groundnuts, Zimbabwe.

GCP also funded computers, measuring scales, laboratory equipment and a portable weather station, which all help to assure good, reliable information on phenotyping.

Scientists too have become quicker and better at their work from having more advanced skills, according to Omari: “We now have more competent groundnut breeders in Tanzania.

“Initially, we depended on germplasm being brought over by ICRISAT and somebody selecting varieties for us. But they have been training us to do our own crosses, so we can now decide what grows in our breeding programme,” he says.

“For us, it is a big achievement to be able to do national crosses. We are advancing toward being a functional breeding programme in Tanzania.

“These gains made are not only sustainable, but also give us independence and autonomy to operate. We developing-country scientists are used to conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Tanzania’s new zest for advanced plant breeding

Photo: N Palmer/CIAT

A farmer at work in her cassava field in northern Tanzania.

According to cassava breeder Geoffrey Mkamilo, a Principal Agricultural Research Officer at ARI: “There are some things that you just cannot do by conventional breeding.”

Usually researchers looking to breed better drought-tolerant and disease- and pest-resistant crops would use conventional breeding methods. This means researchers would be trying to pick out resilient plants by phenotyping alone, looking at how they are growing in the field under different conditions, which can take considerable time to deliver results – especially for crops that are slow to mature, like cassava.

Molecular breeding, on the other hand, involves using molecular markers to make the breeding process faster and more effective. These markers are genetic sequences known to be linked to useful genes that confer plant traits such as drought tolerance or disease resistance. Breeders can easily test small amounts of plant material for these markers, so they act like genetic ‘tags’, flagging up whether or not particular genes are present.

This knowledge helps breeders to efficiently select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity. Phenotyping is still needed in discovering markers, linking genetic information with physical traits, and in testing the performance of materials in the field, but overall the time taken produce a new variety can be reduced by years.

“Before I started working with GCP, molecular breeding for me was very, very difficult… I wasn’t trained to become a molecular breeder. Now, with GCP, I can speak the same language,” Geoffrey says.

Photo: Kanju/IITA

A farmer carefully packs harvested cassava tubers for transportation to the market in Bungu, Tanzania.

Via GCP, Geoffrey had the opportunity to work with scientists based in Colombia at the International Center for Tropical Agriculture (CIAT) and in Nigeria at the International Institute of Tropical Agriculture (IITA), among other experts in research institutes across the world.

The team first began to release new cassava varieties developed using marker-assisted selection in 2011, with four varieties for two different Tanzanian environments. These varieties had manifold benefits: dual resistance to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), and productivity potential of up to double the yield of existing commercial varieties.

The research continues to produce ever better cassava varieties, and in this endeavour Geoffrey cannot overemphasise the power of integrating conventional breeding practices with molecular breeding.

“I have received so many phone calls from farmers; they even call in the night. They say, ‘Geoffrey, we have heard that you have very good materials. Where do we get these materials?’ So many, many farmers are calling,” says Geoffrey. “Many, many organisations – even NGOs, they also call. They want these materials. And even the private sector calls. GCP has contributed tremendously to this.”

More links

Jun 222015
 
Photo: Joseph Hill/Flickr (Creative Commons)

Groundnut plants growing in Senegal.

Across Africa, governments and scientists alike are heralding groundnuts’ potential to lead resource-poor farmers out of poverty.

Around 5,000 years ago in the north of Argentina, two species of wild groundnuts got together to produce a natural hybrid. The result of this pairing is the groundnut grown today across the globe, particularly in Africa and Asia. Now, scientists are discovering the treasures hidden in the genes of these ancient ancestors.

Nearly half of the world’s groundnut growing area lies within the African continent, yet Africa’s production of the legume has, until recently, accounted for only 25 percent of global yield. Drought, pests, diseases and contamination are all culprits in reducing yields and quality. But through the CGIAR Generation Challenge Programme (GCP), scientists have been developing improved varieties using genes from the plant’s ancient ancestors. These new varieties are destined to make great strides towards alleviating poverty in some of the world’s most resource-poor countries.

Photo: Bill & Melinda Gates Foundation

A Ugandan farmer at work weeding her groundnut field.

A grounding in the history of Africa’s groundnuts

From simple bar snack in the west to staple food in developing countries, groundnuts – also commonly known as peanuts – have a place in the lives of many peoples across the world. First domesticated in the lush valleys of Paraguay, groundnuts have been successfully bred and cultivated for millennia. Today they form a billion-dollar industry in China, India and the USA, while also sustaining the livelihoods of millions of farming families across Africa and Asia.

Groundnut facts and figures •	About one-third of groundnuts produced globally are eaten and two-thirds are crushed for oil  •	The residue from oil processing is used as an animal feed and fertiliser •	Oils and solvents derived from groundnuts are used in medicines, textiles, cosmetics, nitro-glycerine, plastics, dyes, paints, varnishes, lubricating oils, leather dressings, furniture polish, insecticides and soap •	Groundnut shells are used to make plastic, wallboard, abrasives, fuel, cellulose and glue; they can also be converted to biodiesel

“The groundnut is one of the most important income-generating crops for my country and other countries in East Africa,” says Malawian groundnut breeder Patrick Okori, Principal Scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), who was also GCP’s Product Delivery Coordinator for groundnuts.

“It’s like a small bank for many smallholder farmers, one that can be easily converted into cash, fetching the highest prices,” he says.

The situation is similar in West Africa, according to groundnut breeder Issa Faye from the Institut Sénégalais de Recherches Agricoles (ISRA; Senegalese Agricultural Research Institute), who has been involved in GCP since 2008. “It’s very important for Senegal,” he says. “It’s the most important cash crop here – a big source of revenue for farmers around the country. Senegal is one of the largest exporters of peanut in West Africa.”

Groundnuts have good potential for sustaining a strong African export industry in future, while providing a great source of nutrition for Africa’s regional farming families.

“We believe that by using what we have learnt through GCP, we will be able to boost the production and exportation of groundnuts from Senegal to European countries, and even to Asian countries,” says Issa. “So it’s very, very important for us.”

Photo: Joseph Hill/Flickr (Creative Commons)

Harvested groundnuts in Senegal.

How Africa lost its groundnut export market

Photo: V Vadez

Groundnuts in distress under drought conditions.

In Africa, groundnuts have mostly been grown by impoverished smallholder farmers, in infertile soils and dryland areas where rainfall is both low and erratic. Drought and disease cause about USD 500 million worth of losses to groundnut production in Africa every year.

“Because groundnut is self-pollinating, most of the time poor farmers can recycle the seed and keep growing it over and over,” Patrick says. “But for such a crop you need to refresh the seed frequently, and after a certain period you should cull it. So the absence of, or limited access to, improved seed for farmers is one of the big challenges we have. Because of this, productivity is generally less than 50 percent of what would be expected.”

Photo: S Sridharan/ICRISAT

Rosette virus damage to groundnut above and below ground.

Diseases such as the devastating groundnut rosette virus – which is only found in Africa and has been known to completely wipe out crops in some areas – as well as pests and preharvest seed contamination have all limited crop yields and quality and have subsequently shut out Africa’s groundnuts from export markets.

The biggest blow for Africa came in the 1980s from a carcinogenic fungal toxin known as aflatoxin, explains Patrick.

Photo: IITA

Aflatoxin-contaminated groundnut kernels from Mozambique.

Aflatoxin is produced by mould species of the genus Aspergillus, which can naturally occur in the soil in which groundnuts are grown. When the fungus infects the legume it produces a toxin which, if consumed in high enough quantities, can be fatal or cause cancer. Groundnut crops the world over are menaced by aflatoxin, but Africa lost its export market because of high contamination levels.

“That’s why a substantial focus of the GCP research programme has been to develop varieties of groundnuts with resistance to the fungus,” says Patrick.

After a decade of GCP support, a suite of new groundnut varieties representing a broad diversity of characteristics is expected to be rolled out in the next two or three years. This suite will provide a solid genetic base of resistance from which today’s best commercial varieties can be improved, so the levels of aflatoxin contamination in the field can ultimately be reduced.

Ancestral genes could hold the key to drought tolerance and disease resistance

In April 2014, the genomes of the groundnut’s two wild ancestral parents were successfully sequenced by the International Peanut Genome Initiative – a multinational group of crop geneticists, who had been working in collaboration for several years.

The sequencing work has given breeders access to 96 percent of all groundnut genes and provided the molecular map needed to breed drought-tolerant and disease-resistant higher-yielding varieties, faster.

“The wild relatives of a number of crops contain genetic stocks that hold the most promise to overcome drought and disease,” says Vincent Vadez, ICRISAT Principal Scientist and groundnut research leader for GCP’s Legumes Research Initiative. And for groundnut, these stocks have already had a major impact in generating the genetic tools that are key to making more rapid and efficient progress in crop breeding.

“Genetically, the groundnut has always been a really tough nut to crack,” says GCP collaborator David Bertioli, from the University of Brasilia in Brazil. “It has a complex genetic structure, narrow genetic diversity and a reputation for being slow and difficult to breed. Until its genome was sequenced, the groundnut was bred relatively blindly compared to other crops, so it has remained among the less studied crops,” he says.

With the successful genome sequencing, however, researchers can now understand groundnut breeding in ways they could only dream of before.

Photo: N Palmer/CIAT

Groundnut cracked.

“Working with a wild species allows you to bring in new versions of genes that are valuable for the crop, like disease resistance, and also other unexpected things, like improved yield under drought,” David says. “Even things like seed size can be altered this way, which you don’t really expect.”

The sequencing of the groundnut genome was funded by The Peanut Foundation, Mars Inc. and three Chinese academies (the Chinese Academy of Agricultural Sciences, the Henan Academy of Agricultural Sciences, and the Shandong Academy of Agricultural Sciences), but David credits GCP work for paving the way. “GCP research built up the populations and genetic maps that laid the groundwork for the material that then went on to be sequenced.”

Chair of GCP’s Consortium Committee, David Hoisington – formerly ICRISAT’s Director of Research and now Senior Research Scientist and Program Director at the University of Georgia – says the sequencing could be a huge step forward for boosting agriculture in developing countries.

“Researchers and plant breeders now have much better tools available to breed more productive and more resilient groundnut varieties, with improved yields and better nutrition,” he says.

These resilient varieties should be available to farmers across Africa within a few years.

Genetics alone will not lift productivity – farmers’ local knowledge is vital

Improvements in the yield, quality and share of the global market of groundnuts produced by developing countries are already being seen as a result of GCP support, says Vincent Vadez. “But for this trend to continue, the crop’s ability to tolerate drought and resist diseases must be improved without increasing the use of costly chemicals that most resource-poor farmers simply cannot afford,” he says.

While genetic improvements are fundamental to developing the disease resistance and drought tolerance so desperately needed by African farmers, there are other important factors that can influence the overall outcome of a breeding programme, he explains. Understanding the plant itself, the soil and the climate of a region are all vital in creating the kinds of varieties farmers need and can grow in their fields.

Photo: Y Wachira/Bioversity International

Kenyan groundnut farmer Patrick Odima with some of his crop.

“I have grown increasingly convinced that overlooking these aspects in our genetic improvements would be to our peril,” Vincent warns. “There are big gains to be made from looking at very simple sorts of agronomic management changes, like sowing density – the number of seeds you plant per square metre. Groundnuts are often cultivated at seeding rates that are unlikely to achieve the best possible yields, especially when they’re grown in infertile soils.”

For Omari Mponda, now Director of Tanzania’s Agricultural Research Institute at Naliendele (ARI–Naliendele), previously Zonal Research Coordinator and plant breeder, and country groundnut research leader for GCP’s Tropical Legumes I project (TLI; see box below), combining good genetics with sound agronomic management is a matter of success or failure for any crop-breeding programme, especially in poverty-stricken countries.

“Molecular markers by themselves will not address the productivity on the ground,” he says, agreeing with Vincent. “A new variety of groundnut may have very good resistance, but its pods may be too hard, making shelling very difficult. This does not help the poor people, because they can’t open the shells with their bare hands.”

And helping the poor of Africa is the real issue, Omari says. “We must remind ourselves of that.”

This means listening to the farmers: “It means finding out what they think and experience, and using that local knowledge. Only then should the genetics come in. We need to focus on the connections between local knowledge and scientific knowledge. This is vital.”

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on groundnut within TLI was coordinated by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). The partners in the four target countries were Malawi’s Chitedze Research Station, Senegal’s Institut Sénégalais de Recherches Agricoles (ISRA), and Tanzania’sAgricultural Research Institute (ARI). Other partners were France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), the Brazilian Corporation of Agricultural Research (EMBRAPA) and Universidade de Brasil in Brazil, and University of Georgia in the USA. Tropical Legumes II (TLII) was a sister project to TLI, led by ICRISAT on behalf of the International Institute of Tropical Agriculture (IITA) and International Center for Tropical Agriculture (CIAT). It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

Photo: A Diama/ ICRISAT

Participants at a farmer field day in Mali interact with ICRISAT staff and examine different groundnut varieties and books on aflatoxin control and management options.

Local knowledge and high-end genetics working together in Tanzania

Like Malawi, Tanzania has also experienced the full spectrum of constraints to groundnut production – from drought, aflatoxin contamination, poor soil and limited access to new seed, to a lack of government extension officers visiting farmers to ensure they have the knowledge and skills needed to improve their farming practices and productivity.

Although more than one million hectares of Tanzania is groundnut cropping land, the resources supplied by the government have until now been minimal, says Omari, compared to those received for traditional cash crops such as cashews and coffee.

Photo: C Schubert/CCAFS

A farmer and her children near Dodoma, Tanzania, an area where climate change is causing increasing heat and drought. Groundnut is an important crop for local famers, forming the basis of their livelihood together with maize and livestock.

“But the groundnut is now viewed differently by the government in my country as a result of GCP’s catalytic efforts,” Omari says. “More resources are being put into groundnut research.”

In the realm of infrastructure, for instance, the use of GCP funds to build a new irrigation system at Naliendele has since prompted Tanzania’s government to invest further in irrigation for breeder seed production.

“They saw it was impossible for us to irrigate our crops with only one borehole, for instance, so they injected new funds into our irrigation system. We now have two boreholes and a whole new system, which has helped expand the seed production flow. Without GCP, this probably wouldn’t have happened.”

Irrigation, for Omari, ultimately means being able to get varieties to the farmers much faster: “maybe three times as fast,” he says. “This means we’ll be able to speed up the multiplication of seeds – in the past we were relying on rainfed seed, which took longer to bulk and get to farmers.”

With such practical outcomes from GCP’s research and funding efforts and the new genetic resources becoming available, breeders like Omari see a bright future for groundnut research in Tanzania.

Photo: C Schubert/CCAFS

Groundnut farmer near Dodoma, Tanzania.

The gains being made at Naliendele are not only sustainable, Omari explains, but have given the researchers independence and autonomy. “Before we were only learning – now we have become experts in what we do.”

Prior to GCP, Omari and his colleagues were used to conventional breeding and lacked access to cutting-edge science.

“We used to depend on germplasm supplied to us by ICRISAT, but now we see the value in learning to use molecular markers in groundnut breeding to grow our own crosses, and we are rapidly advancing to a functional breeding programme in Tanzania.”

Omari says he and his team now look forward to the next phase of their research, when they expect to make impact by practically applying their knowledge to groundnut production in Tanzania.

Similar breeding success in Senegal

Photo: C Schubert/CCAFS

Harvesting groundnuts in Senegal.

Issa Faye became involved in GCP in 2008 when the programme partly funded his PhD in fresh seed dormancy in groundnuts. “I was an example of a young scientist who was trained and helped by GCP in groundnut research,” he says.

“I remember when I was just starting my thesis, my supervisor would say, ‘You are very lucky because you will not be limited to using conventional breeding. You are starting at a time when GCP funding is allowing us to use marker-assisted selection [MAS] in our breeding programme’.”

The importance of MAS in groundnut breeding, Issa says, cannot be overstated.

“It is very difficult to distinguish varieties of cultivated groundnut because most of them are morphologically very similar. But if you use molecular markers you can easily distinguish them and know the diversity of the matter you are using, which makes your programme more efficient. It makes it easier to develop varieties, compared to the conventional breeding programme we were using before we started working with GCP.”

By using markers that are known to be linked to useful genes for traits such as drought tolerance, disease resistance, or resistance to aflatoxin-producing fungi, breeders can test plant materials to see whether or not they are present. This helps them to select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity, saving time and money.

Photo: S Sridharan/ICRISAT

These women in Salima District, Malawi, boil groundnuts at home and carry their tubs to the Siyasiya roadside market.

Senegal, like other developing countries, does not have enough of its own resources for funding research activities, explains Issa. “We can say we are quite lucky here because we have a well-developed and well-equipped lab, which is a good platform for doing molecular MAS. But we need to keep improving it if we want to be on the top. We need more human resources and more equipment for boosting all the breeding programmes in Senegal and across other regions of West Africa.”

Recently, Issa says, the Senegalese government has demonstrated awareness of the importance of supporting these activities. “We think that we will be receiving more funds from the government because they have seen that it’s a kind of investment. If you want to develop agriculture, you need to support research. Funding from the government will be more important in the coming years,” he says.

“Now that we have resources developed through GCP, we hope that some drought-tolerant varieties will come and will be very useful for farmers in Senegal and even for other countries in West Africa that are facing drought.”

It’s all about poverty

“The achievements of GCP in groundnut research are just the beginning,” says Vincent. The legacy of the new breeding material GCP has provided, he says, is that it is destined to form the basis of new and ongoing research programmes, putting research well ahead of where it would otherwise have been.

“There wasn’t time within the scope of GCP to develop finished varieties because that takes such a long time, but these products will come,” he says.

For Vincent, diverse partnerships facilitated by GCP have been essential for this to happen. “The groundnut work led by ICRISAT and collaborators in the target countries – Malawi, Senegal, and Tanzania – has been continuously moving forward.”

Photo: S Sridharan/ICRISAT

Groundnut harvesting at Chitedze Agriculture Research Station, Malawi.

Issa agrees: “It was fantastic to be involved in this programme. We know each other now and this will ease our collaborations. We hope to keep working with all the community, and that will obviously have a positive impact on our work.”

For Omari, a lack of such community and collaboration can only mean failure when it comes to addressing poverty.

“If we all worked in isolation, a lot of money would be spent developing new varieties but nothing would change on the ground,” he says. “Our work in Tanzania is all about the problem of poverty, and as scientists we want to make sure the new varieties are highly productive for the farmers around our area. This means we need to work closely with members of the agricultural industry, as a team.”

Omari says he and his colleagues see themselves as facilitators between the farmers of Tanzania and the ‘upstream end’ of science represented by ICRISAT and GCP. “We are responsible for bringing these two ends together and making the collaboration work,” he says.

Only from there can we come up with improved technologies that will really succeed at helping to reduce poverty in Africa.”

As climate change threatens to aggravate poverty more and more in the future, the highly nutritious, drought-tolerant groundnut may well be essential to sustain a rapidly expanding global population.

By developing new, robust varieties with improved adaptation to drought, GCP researchers are well on the way to increasing the productivity and profitability of the groundnut in some of the poorest regions of Africa, shifting the identity of the humble nut to potential crop champion for future generations.

More links

Photo: S Sridharan/ICRISAT

Oswin Madzonga, Scientific Officer at ICRISAT-Lilongwe, visits on-farm trials near Chitala Research Station in Salima, Malawi, where promising disesase-resistant varieties are being tested real life conditions.

May 292015
 

A little over a decade ago, a PhD student in Brazil was poring over sorghum genes, trying to isolate one that helps plants withstand acidic soils.

Photo: B Nichols/USDA

Sorghum

Scientists at the Brazilian Corporation of Agricultural Research (EMBRAPA) had been researching plants that can grow well in acidic soils since the mid-1970s.

“What we have done within the Generation Challenge Programme,” explains Jurandir Magalhães, now a senior scientist for EMBRAPA, as he reflects back on the past decade, “is speed up maize and sorghum breeding for acidic soil adaptation”.

EMBRAPA partnered with the CGIAR Generation Challenge Programme (GCP) to advance plant genetics so as to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.

Almost 70 percent of Brazil’s arable land is made up of acidic soils. That means the soil has toxic levels of aluminium and low levels of phosphorous – a lethal combination that makes crop production unsustainable. Aluminium toxicity in soil comes close to rivalling drought as a food-security threat in critical tropical food-producing regions. This is because acidic soils reduce root growth and deprive plants of the nutrients and water they need to grow.

Robert Schaffert – EMBRAPA’s longest-serving sorghum breeder – had developed mapping populations for aluminium tolerance in sorghum; these populations were the basis for the work supported by GCP.

During the first four years of the 10-year Programme, Jurandir was able to identify and clone the major aluminium-tolerance gene in sorghum – AltSB – using these mapping populations. The cloned gene has since enabled researchers across Africa and Asia to quickly and efficiently breed improved sorghum and maize plants that can withstand acidic soils.

Jurandir, speaking today about the work to advance sorghum genetic resources, says: “Wherever there are acidic soils with aluminium toxicity and low phosphorous availability, our results should be applicable.”

His story with EMBRAPA is one of many where GCP-supported projects have been instrumental in helping global research centres achieve their goals, which ultimately will help farmers worldwide.

Common objectives

Jurandir is now a research scientist in molecular genetics and genomics at the EMBRAPA Maize & Sorghum research centre. He and colleagues at the centre partnered with scientists in Africa, Asia and the US to identify and clone genes in sorghum, maize and rice that confer resistance or tolerance to stresses such as soil acidity, phosphorus efficiency, drought, pests and diseases.

Photo: R Silva/EMBRAPA

Maize growing in Brazil.

“One important focus of GCP was linking basic research to applied crop breeding,” Jurandir says. “This is also the general orientation of our programme at EMBRAPA. We develop projects and research to produce, adapt and diffuse knowledge and technologies in maize and sorghum production by the efficient and rational use of natural resources.

“GCP provided both financial support and a rich scientific community that were useful to help us attain our common objectives.”

EMBRAPA’s work on cloning the AltSB gene would prove to be one of the first steps in GCP’s foundation sorghum and maize projects, both of which sought to provide farmers in the developing world with crops that will not only survive but thrive in the acidic soils where aluminium toxicity reduces crop production.

Leon Kochian of Cornell University in the US was Jurandir’s supervisor at the time when they applied for GCP funding. Leon was a Principal Investigator for various GCP research projects, researching how to improve grain yields of crops grown in acidic soils.

“The breeders are so important,” says Leon about the importance of supporting institutes such as EMBRAPA to advance plant genetics. “Ultimately, they are the cliché of ‘the rubber hits the road’. They’re the ones who translate what we’re trying to figure out into the actual crop improvements. That’s really what it’s all about.”

“That’s why EMBRAPA is a unique institution. Their mission is to get improved seed out, new germplasm out, for the farmers. They have the researchers in sorghum and maize breeding [Robert Schaffert and Sidney Parentoni] and molecular biology [Jurandir Magalhães and Claudia Guimarães].”

Photo: CIFOR

Maize farmers in Brazil.

Great minds think alike

Jurandir’s EMBRAPA colleague Claudia Guimarães, a plant molecular geneticist focusing on maize, says GCP promoted ‘products’, which also echoed the mission statement of EMBRAPA’s Maize & Sorghum research centre.

The centre’s mission is to: ‘Generate, adapt and transfer knowledge and technology that allows for the efficient production and use of maize, sorghum, and natural resources as well as promotes competitiveness in the agriculture sector, sustainable development, and the well-being of society.’

GCP, says Claudia, “wanted to extract something else from the science – products – the idea of a real, touchable product. You have to have progress: germplasm, lines, markers; they are quite practical things.

“The major goal of GCP is to deliver products that can improve people’s lives worldwide. So it needs to be readily available and useful for other scientists and for the whole community.”

GCP wanted to ensure that research products could and would be adopted, adapted and applied for the ultimate benefit of resource-poor farmers. The Programme therefore set out to catalyse interactions between the various players who are needed to bridge the gap between strategic research in advanced labs and resource-poor farmers.

GCP and EMBRAPA were both working towards tangible applied outcomes, says Claudia: “GCP was not only giving you money, they are really serious about what are you doing: ‘Did you deliver everything you promised?’”

Claudia delivered. She and her team at EMBRAPA were able to find an important aluminium-tolerance gene in maize similar to the sorghum gene. This outcome provided the basic materials for molecular-breeding programmes focusing on improving maize production and stability on acidic soils in Africa and other developing regions.

Photo: L Kochian

Maize trials in the field at EMBRAPA. The maize plants on the left are aluminium-tolerant while those on the right are not.

Multifaceted and tangible results

Through further GCP funding, EMBRAPA researchers Robert Schaffert and Sidney Parentoni were able to work together with two researchers from Kenya, Dickson Ligeyo and Samuel Gudu, to develop a breeding programme to combine the improved Brazilian germplasm with locally adapted Kenyan materials. A new base of improved germplasm was established for Kenyan breeders, which allowed the development of varieties adapted to acidic soils in Kenya.

Sidney, a maize breeder for GCP projects and now the deputy head of research and development for EMBRAPA Maize & Sorghum, says that the benefits of being part of GCP are multifaceted: “It was very important, not only for EMBRAPA as an institute, but also individually for each of the participants that had the opportunity to interact with partners in different parts of the word,” says Sidney.

Photo: Bioversity International

A Kenyan farmer with her sorghum crop.

“Each of them adds a piece to build the results achieved by GCP, which from my perspective promoted a number of advances in the areas of genetics and breeding.

“Technologies such as root image scanning developed at Cornell [University] were transferred to EMBRAPA and allowed us to do large-scale screening in a number of maize and sorghum genotypes with large impacts in phosphorous-efficiency studies.

“Scientists from Africa were trained in breeding and screening techniques at EMBRAPA, and Brazilian scientists had the opportunity to go to Africa and interact with African researchers to jointly develop strategies for breeding maize and sorghum for low-phosphorous and acidic soils.

“These trainings and exchanges of experiences were very important for the people and for the institutions involved,” says Sidney.

Sustainable partnerships to break ground for groundnut

Photo: N Palmer/CIAT

Groundnut

Soraya Leal-Bertioli is a researcher in the EMBRAPA Genetic Resources & Biotechnology centre. She works on groundnut (also known as peanut), and formed part of the GCP team working on groundnut with tolerance to drought and resistance to diseases and fungal contamination. She concurs that GCP united researchers from all over the globe in a common goal.

“GCP not only identified groups, but it went out, searched for people and invited contributions, offered resources to get them together. GCP brought partnerships to a whole new level,” Soraya says.

“Last time I checked there were 200 partners in 50 countries. No one is able to do that. It required a lot of money, a lot of resources, but the way it was dealt with in GCP was: ‘Let’s reach out for the main players, the ones who have the technology, and also the ones who can use the technology’.

“GCP used the resources for the benefit of the community and brought everybody together.”

Soraya says the traditional way of funding research often had ‘no structure’.

“Sometimes a university or funding body receives a large amount of money and decides to build something, a new institute in the middle of the jungle somewhere, but they don’t have anybody to run it; it is not sustainable.

“What GCP did was help to provide the structure and the agents for the whole system. They helped train the people to run the whole system. This is a very sustainable model, which is very likely to give good results in a much shorter time frame than other programmes.”

Watch Soraya – and other members of the team – discuss the complex personality of groundnut and groundnut research in our video series:

Genetic stocks AND people are products

The products and outcomes of the collaboration with GCP have included both the tangible and the not-so-tangible. Sidney says that a large quantity of Brazilian improved maize and sorghum lines tolerant to acidic soils has been developed over the years at EMBRAPA.

“These materials were shared with partners in Africa, and this was a major contribution to Kenyan farmers, as part of this collaborative work done in the scope of GCP.

“To be part of the programme has been very important for EMBRAPA’s research team. It has given us the opportunity to interact with a diversity of institutes.”

Sidney mentions institutes they gave worked with through GCP, including Cornell University and Texas A&M University in the US, the Japan International Research Center for Agricultural Sciences (JIRCAS), the International Rice Research Institute (IRRI), the International Maize and Wheat Improvement Center (CIMMYT), and various institutes in Africa, such as Moi University, Kenya, and the Kenya Agricultural and Livestock Research Organisation (KALRO).

Sidney concludes: “In this large network of partnerships, EMBRAPA was able to learn and to share information in a highly productive way.

“From my perspective, the involvement with GCP projects allowed me to grow as a researcher and as a person, and also at the same time to share and to acquire new knowledge in a number of areas. I think it was a ‘win-win’ interaction for all the participants.”

Many of the products generated within the scope of GCP, such as markers and germplasm, are already available within EMBRAPA’s breeding programmes. Avenues for further research have been paved based on the GCP achievements, and these new research lines will be continued within new projects.

As Claudia says: “The strong partnerships built along the way with GCP will be maintained by us joining with new research teams from other institutes and countries to work on new projects.”

More links