Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 192015



Precious sorghum seed diversity.

Humans are a protective species. We like to hoard away our precious items in vaults and safes made of concrete and steel, safe from thieves and catastrophes.

One not-so-obvious precious item, which many people take for granted, is seed. Without seeds, farmers would not be able to grow the grains, legumes, vegetables and fruits we eat.

For centuries, farmers have harvested seeds to store and protect for planting the following year. Most of the time, farmers will only keep seeds harvested from plants that have excelled in their environment – that have produced high yields or have favourable qualities such as larger or tastier grain. This simple iterative process of selecting primarily for high yields means that many crops today are closely related genetically, which can make them more vulnerable to evolving diseases and pests.

Without diversity, a severe epidemic can completely wipe out a farmer’s crop — and even a whole region’s crop. One of the best-known historical examples of just such a disastrous crop failure is the Irish Potato Famine of the 19th century, when potato blight disease caused extensive death, human suffering and social upheaval. A number of crops around the world are in similar danger today, including wheat, threatened by the Ug99 strain of stem rust disease, to which almost all the world’s wheat is susceptible, and cassava, menaced by African cassava mosaic virus (ACMV).

The solution – genetic diversity

Plant breeders are looking at ways to increase diversity among cultivated crops, mitigating the risks of pests and diseases and introducing genes that help plants thrive in their local environments. To do this they are looking for useful traits in traditional cultivars, related species and wild ancestors. Such traits may include tolerance to drought, heat, and poor soils as well as insect and disease resistance. Breeders cross these donor parents with high-yielding elite breeding lines. The resulting new varieties have all the preferred traits of their parents and none of the deficiencies.

The genetic diversity of crops and their wild relatives is held by gene banks. There are thousands of gene banks worldwide, which collect and store seeds from hundreds of thousands of varieties. Breeders and researchers submit seed and tissue of wild and cultivated varieties as well as of lines of new varieties they are trying to breed.

Photo: IRRI

Staff hard at work in the medium-term storage room of the International Rice Genebank at IRRI.

“For years, gene banks were primarily repositories, but with genetics evolving, and its subsequent application in plant breeding growing over the past 10 years, breeders and geneticists are now mining gene banks for wild and exotic species that might have favourable genes for desired traits,” explains Ruaraidh Sackville Hamilton, evolutionary biologist and head of the International Rice Genebank maintained by the International Rice Research Institute (IRRI) at its headquarters in The Philippines.

Sifting through all these gene-bank collections for plants with desired traits is challenging for breeders, even for traits that are easy to select for through visual screening. For example, Ruaraidh says the rice collection held at the International Rice Genebank contains more than 117,000 different types of rice, or accessions.

In recognition of this challenge, the initial rationale of the CGIAR Generation Challenge Programme’s (GCP) genetic stocks activity was to make the diversity in gene banks more easily accessible and practical for the study – and application – of genetic diversity.

What is a genetic stock? “A genetic stock is a line that has been created by modern breeders and researchers, using conventional technologies, specifically to address some specified scientific purpose, typically for gene discovery,” explains Ruaraidh Sackville Hamilton, evolutionary biologist and head of the International Rice Genebank maintained by the International Rice Research Institute (IRRI). This definition includes the notion of perpetuation (a ‘line’), which is central to genetic stocks: either the materials are genetically stabilised through sexual reproduction, or they can be distributed through vegetative propagation.

Taking stock of genetic stocks

The first step towards making diversity accessible to breeders was to develop reference sets, representing as much genetic diversity as possible within a small proportion of gene bank accessions, selected through pedigree and molecular marker information.

“Reference sets reduce the number of choices that breeders have to search through, from thousands down to a few hundred,” says Jean Christophe Glaszmann, a plant geneticist at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), who held a managing role at GCP between 2004 and 2010, overseeing much of the reference-set work as GCP’s Subprogramme Leader on Genetic Diversity during GCP’s Phase I.

“A reference set represents the whole diversity found in the collections. Breeders can then use this sample to make crosses with their preferred varieties to try and integrate specific genes from the reference-set lines into those varieties.”

During the first phase of GCP (2004–2008), the Programme focused on identifying and characterising reference sets, each of roughly 300 lines, for banana, barley, cassava, chickpea, coconut, common bean, cowpea, faba bean, finger millet, foxtail millet, groundnut, lentil, maize, pearl millet, pigeonpea, potato, rice, sorghum, sweetpotato, wheat and yam. For most crops phenotyping data – information about physical plant traits – were also being made available for the reference sets, helping researchers to select material of interest for breeding.

Photo: P Kosina/CIMMYT

A trainee at the International Maize and Wheat Improvement Center (CIMMYT) shows off diverse wheat ears, a small sample of the thousands of different lines found in the centre’s gene bank.

A further aspect of the work was the development of data-kits, which included molecular markers used to genotype and verify the sets. These kits allow plant scientists to assess and compare the diversity of their own collections with that of the reference sets, thus facilitating the introduction of new diversity in their prebreeding programmes.

Jean Christophe says the reference sets and data-kits were pivotal to the success of GCP’s molecular-breeding projects as they allowed researchers in different institutes to simultaneously work on the same genetic materials. “The sets served as consistent reference material that everybody collaborating on the project could analyse,” he explains. “Some of these collaborations involved hundreds of researchers, particularly those projects seeking to map genomes and identify genes.”

During the second phase of GCP (2009–2014), the reference sets for GCP’s Phase II target crops (cassava, chickpea, common bean, cowpea, groundnut, maize, rice, sorghum and wheat) were thoroughly phenotyped under different environments, including biotic and abiotic stresses. Jean Christophe says this work helped to identify new alleles (alternative forms of a gene or genetic locus) associated with desired traits that could be used for breeding purposes. Reference sets have been used successfully to identify and use new plant material in breeding programmes to improve various traits, particularly disease resistance and even more complex traits such as drought tolerance in cassava, chickpea, cowpea, maize, sorghum and wheat.

Broadening groundnut’s genetic base to prevent disease

Photo: V Meadu/CCAFS

A farmer in Senegal shows off her groundnut crop, almost ripe for harvest.

Another objective of GCP’s genetic stocks activity was to create new diversity within domesticated cultivated crops that have narrow genetic diversity, such as groundnut.

“The groundnuts we grow today are not too dissimilar to the ones that were first created naturally five to six thousand years ago,” says David Bertioli, a plant geneticist at the University of Brasília, Brazil. “This means that they are genetically very similar and have a narrow genetic base – the narrowest of any cultivated crop.”

This genetic similarity means that all cultivated groundnuts are very susceptible to diseases, particularly leaf spot, requiring expensive agrochemicals, especially fungicides. Without agrochemicals, which smallholder farmers in Africa and Asia often cannot afford, yields can be very low.

David says groundnut breeders always recognised the need to increase diversity, but because cultivated groundnuts have had a narrow base for so long, they became radically different from their wild relatives, making it very difficult to successfully cross wild species with cultivated species.

New genetic diversity is created through recombination, that is, through crossing contrasting varieties to create novel lines. Researchers can study these recombinants to identify genes associated with desired traits or use them in further crosses to develop new varieties.

“One of our first jobs was to make wild-species recombinants to trace out the relatedness of the wild-species genomes,” says David. “Once we could see the relatedness, we could see which wild species we could cross with cultivated lines. We had to do a lot of these crosses, but we eventually started to broaden the genetic diversity of the cultivated lines.”

David says this painstaking work, carried out under GCP, also formed the platform for sequencing the groundnut genome for the first time.

“That gave us an even greater understanding of the genetic structure, which is laying the groundwork for new varieties with traits such as added disease resistance and drought tolerance,” says David.

An additional key outcome of the groundnut aspect of the Legumes Research Initiative was developing ‘wild × domesticated’ synthetic lines, which are being crossed with domesticated groundnut varieties in Malawi, Niger, Senegal and Tanzania to introduce higher drought tolerance.

Photo: C Schubert/CCAFS

Like many areas of Africa struck by climate change, this village in Tanzania is suffering the effects of drought, with temperature increases and increasingly unpredictable rainfall.

Genetic gain by exploiting genetic stocks

The genetic stocks activity has generated a large and diverse array of resources across GCP’s target crops, not just for groundnut.

Recombinant inbred lines (RILs) incorporating specific traits of interest – particularly drought tolerance – have been developed for cowpea, maize, rice, sorghum and wheat. RILs are stabilised genetic stocks, created over several years by crossing two inbred lines followed by repeated generations of sibling mating to produce inbred lines that are genetically identical. These can then be used to discover and verify the role of particular genes and groups of genes associated with desired traits.

Near-isogenic lines (NILs) are RILs that possess identical genetic codes, except for differences at a few specific genetic loci. This enables researchers to evaluate particular genes and groups of genes that they may want to incorporate into breeding lines, particularly genes that have come from plants that otherwise do not perform well agronomically, such as wild relatives or older varieties. Sorghum NILs incorporating the AltSB locus for aluminium tolerance are being tested in Burkina Faso, Mali and Niger on problematic acid soils.

Multiparent advanced generation intercross (MAGIC) populations are a form of recombinants developed from crossing several parental lines from different genetic origins and, in some cases, exotic backgrounds to maximise the mix of genes from the parental lines in the offspring. MAGIC populations have been developed for chickpea, cowpea, rice and sorghum, and are being developed for common bean. Selected parental lines have been used to combine elite alleles for simple traits such as aluminium tolerance in sorghum and submergence tolerance in rice, as well as for complex traits such as drought or heat tolerance.

The further evaluation and use of the genetic stocks stemming from GCP-supported projects, as well as the generation of new genetic stocks, will continue beyond GCP through CGIAR’s Research Programs as well as through those institutes and national breeding programmes associated with GCP. There will be a continuing and evolving need to identify new genes associated with desired traits to improve cultivated germplasm.

Photo: K Zaw/Bioversity International

Transplanting rice plants in Myanmar.

Sustaining genetic stocks into the future

Sustainability of genetic stocks has always been an issue, as stocks are generally not managed in a centralised way but are left under the direct responsibility of the scientists who developed them. These resources have therefore usually been handled in a highly ad hoc manner.

Because of high staff turnover in CGIAR Centers and breeding programmes in developing countries, and also because their management is neither centralised nor coordinated, these resources are also often lost as staff move from one organisation to another.

Although different genetic resources require different management protocols and storage timelines, the idea that gene bank curators take on the management of genetic stocks was proposed several years ago. For Centers such as IRRI, this is already a reality – for at least some of the genetic resources developed.

However, with the growing popularity of tapping into the rich diversity in gene banks that GCP’s genetic stocks activity has helped drive, gene bank supervisors such as Ruaraidh Sackville Hamilton are concerned about how genetic stocks will be sustained.

“The more popular molecular breeding and genetic stock become, the more funds we need to help us curate and disseminate them,” says Ruaraidh. He proposes to recover costs for managing genetic resources through a chargeback system on a two-tier scale, with non-profit organisations receiving stock at lower costs than commercial organisations. “Such a system would be sustainable and reduce the burden on gene bank institutes,” he says.

Still, the costs are of concern to institutes, particularly CGIAR Centers, which maintain most of the world’s plant crop gene banks.

CGIAR, a global partnership that unites 15 research Centres, including IRRI, is engaged in research for a food-secure future. CGIAR also created GCP. “CGIAR’s main priority is to conserve genetic resources for all humankind,” says Dave Hoisington, Senior Research Scientist and Program Director at the University of Georgia in the US. He was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT) (both CGIAR Centers) and Chair of the GCP Consortium Committee.

“In both of the CGIAR Centers I worked in,” says Dave, “we always maintained the position that if the Center were to shut down, the last thing we’d do would be to turn out the lights of the gene bank. Even when we had funding cuts, we would never cut the budget for the gene bank.”

Photo: X Fonseca/CIMMYT

At work in the maize active collection in the gene bank at CIMMYT, which keeps maize and wheat diversity in trust for the world.

New programme to fund crop diversity

To alleviate some of the funding burden on CGIAR Centers and free up more money to use in research and development, CGIAR created a new CGIAR Research Program for Managing and Sustaining Crop Collections. The comprehensive five-year programme is managed by the Crop Trust (formerly Global Crop Diversity Trust).

“The Trust is a financial mechanism to raise an endowment, to ensure the conservation and availability of crop diversity,” says Charlotte Lusty, Genebank Programmes Coordinator at the Global Crop Diversity Trust. “The new programme is an extension of the Trust’s work. We aim to raise a USD 500 million endowment by 2016. The interest from this will be divided between the CGIAR Centers to cover all their long-term conservation operations.”

The new programme is also reviewing how gene banks within CGIAR are being managed, with a view to developing a quality management system, which it hopes will make gene banks run more efficiently. Charlotte says it is also encouraging stronger gene banks, such as IRRI and CIMMYT, to lend their expertise and experience to smaller gene banks so they can meet and build on their management quality.

Dave Hoisington believes that the new programme will provide CGIAR’s gene banks with greater capacity and make them even more attractive for researchers wanting to make use of their rich diversity.

Photo: IRRI

A wide diversity of rice seed from the collection of the International Rice Genebank at IRRI.

Looking forward 30 years

Tapping into new diversity was really at the heart of GCP, and was a major, if not the primary, rationale for its establishment. Over its 10-year lifespan, has invested almost USD 28 million, or 18 percent of its budget, in developing genetic stocks, both reference sets and recombinants, for over 20 different crops.

Although these products don’t directly benefit farmers, they do indirectly help by significantly increasing breeding efficiency.

“All this research is fairly new and I am amazed, as a geneticist and plant breeder, by how far we’ve come since GCP started in 2004,” says David Bertioli.

“What we’ve been able to do in groundnut – that is, broaden the genetic base – hasn’t occurred naturally or through conventional breeding for thousands of years. And we’ve been able to do it in less than ten years.”

David recognises that the true value of the research will only be realised when new disease-resistant varieties are available for farmers to grow, which may be in five to seven years. “Only then will we be able to look back and consider the worth of all the hard work and cooperation that went into developing these precious varieties.”

GCP’s genetic stock activities have generated a large and diverse array of resources. These resources lay the foundation for further genetic stock development and will aid in researchers’ quests to tap into genetic diversity well into the future.

More links

Oct 162015
Photo: A Paul-Bossuet/ICRISAT

Pigeonpea farmers in India.

The tagline of the CGIAR Generation Challenge Programme (GCP) is ‘Partnerships in modern crop breeding for food security’. One of GCP’s many rewarding partnerships was with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

The Institute was a source of valuable partnerships with highly regarded agricultural scientists and researchers, as well as of germplasm and genetic resources from its gene bank. With assistance from GCP, these resources have enabled scientists and crop breeders throughout Africa, Asia and Latin America to achieve crop improvements for chickpea, groundnut, pearl millet, pigeonpea and sorghum, all of which are staple crops that millions of people depend upon for survival.

“The philosophy of GCP at the start was to tap into and use the genomic recourses we had in our gene banks to develop ICRISAT’s and our partners’ breeding programmes,” says Pooran Gaur, GCP’s Product Delivery Coordinator for chickpeas, and Principal Scientist for chickpea genetics and breeding at ICRISAT.

ICRISAT’s gene bank is a global repository of crop genetic diversity. It contains 123,023 germplasm accessions – in the form of seed samples – assembled from 144 countries, making it one of the largest gene banks in the world.

The collection serves as insurance against genetic loss and as a source of resistance to diseases and pests, tolerance to climatic and other environmental stresses, and improved quality and yield traits for crop breeding.

Pooran says the ultimate goal of the GCP–ICRISAT partnership was to use the resources in the gene bank to develop drought-tolerant varieties that would thrive in semi-arid conditions and to make these varieties available to farmers’ fields within a decade.

Photo: S Kilungu/CCAFS

Harvesting sorghum in Kenya.

Setting a foundation for higher yielding, drought-tolerant chickpeas

Pooran was involved with GCP from its beginning in 2004 and was instrumental in coordinating chickpea projects.


Chickpea harvest, India.

“GCP got things started; it set a foundation for using genomic resources to breed chickpeas,” says Pooran. During Phase I of GCP (2004–2009), ICRISAT was involved in developing reference sets for chickpeas and developing mapping populations for drought-tolerance traits. It also collaborated with 19 other international research organisations to successfully sequence the chickpea genome in 2013 – a major breakthrough that paved the way for the development of even more superior chickpea varieties to transform production in semi-arid environments.

The International Chickpea Genome Sequencing Consortium, led by ICRISAT and partly funded by GCP, identified more than 28,000 genes and several million genetic markers. Pooran says these are expected to illuminate important genetic traits that may enhance new varieties.

The trait of most interest to many chickpea breeders is drought tolerance. In recent years, droughts in the south of India, the largest producer of chickpeas, have reduced yields to less than one tonne per hectare. Droughts have also diminished chickpea yields in Ethiopia and Kenya, Africa’s largest chickpea producers and exporters to India. While total global production of chickpeas is around 8.6 million tonnes per year, drought causes losses of around 3.7 million tonnes worldwide.


Putting it to the test: Rajeev Varshney (left, see below) and Pooran Gaur (right) inspecting a chickpea field trial.

Pooran says the foundation work supported by GCP was particularly important for identifying drought-tolerance traits. “We had identified plants with early maturing traits. This allowed us to develop chickpea varieties that have more chance of escaping drought when cereal farmers produce a fast-growing crop in between the harvest and planting of their main crops,” he says.

New varieties that grow and develop more quickly are expected to play a key role in expanding the area suitable for chickpeas into new niches where the available crop-growing seasons are shorter.

“In southern India now we are already seeing these varieties growing well, and their yield is very high,” says Pooran. “In fact, productivity has increased in the south by about seven to eight times in the last 10–12 years.”

Developing capacity by involving partners in Kenya and Ethiopia

Photo: GCP

Monitoring the water use of chickpea plants in experiments at Egerton University, Njoro, Kenya.

As part of GCP’s Tropical Legumes I project (TLI), incorporated within its Legume Research Initiative (RI), ICRISAT partnered with Egerton University in Kenya and the Ethiopian Institute of Agricultural Research (EIAR) to share breeding skills and resources to produce higher yielding, drought-tolerant chickpea varieties.

“When we first started working on this project in mid-2007, our breeding programme was very weak,” says Paul Kimurto of the Faculty of Agriculture at Egerton University, who was Lead Scientist for chickpea research in the TLI project. “We have since accumulated a lot of germplasm, a chickpea reference set and a mapping population, all of which have greatly boosted our breeding programme.”

Paul says that with this increased capacity, his team in Kenya had released six new varieties of chickpea in the five years prior to GCP’s close at the end of 2014, and were expecting more to be ready within in the next three years.

In fields across Ethiopia, meanwhile, the introduction of new varieties has already brought a dramatic increase in productivity, with yields doubling in recent years, according to Asnake Fikre, Crop Research Directorate Director for EIAR.

Varieties like the large-seeded and high-valued kabuli have presented new opportunities for farmers to earn extra income through the export industry, and indeed chickpea exports from eastern Africa have substantially increased since 2001. This has transformed Ethiopia’s chickpeas from simple subsistence crop to one of great commercial significance.

Photo: S Sridharan/ICRISAT

This chickpea seller in Ethiopia says that kabuli varieties are becoming more popular.

Decoding pigeonpea genome

Two years prior to the decoding of the chickpea genome, GCP’s Director Jean-Marcel Ribaut announced that a six-year, GCP-funded collaboration led by ICRISAT had already sequenced almost three-quarters of the pigeonpea genome.

“This will have significant impact on resource-poor communities in the semi-arid regions, because they will have the opportunity to improve their livelihoods and increase food availability,” Jean-Marcel stated in January 2012.

Pigeonpea, the grains of which make a highly nutritious and protein-rich food, is a hardy and drought-tolerant crop. It is grown in the semi-arid tropics and subtropics of Asia, Africa, the Americas and the Caribbean. This crop’s prolific seed production and tolerance to drought help reduce farmers’ vulnerability to potential food shortages during dry periods.

Photo: B Sreeram/ICRISAT

A pigeonpea farmer in his field in India.

The collaborative project brought together 12 participating institutes operating under the umbrella of the International Initiative for Pigeonpea Genomics. The initiative was led by Rajeev K Varshney, GCP’s Genomics Theme Leader and Director of the Center of Excellence in Genomics at ICRISAT. Other participants included BGI in Shenzhen, China; four universities; and five other advanced research entities, both private and public. The Plant Genome Research Program of the National Science Foundation, USA, also funded part of this research.

“We were able to assemble over 70 percent of the genome. This was sufficient to enable us to change breeding approaches for pigeonpea,” says Rajeev. “That is, we can now combine conventional and molecular breeding methods – something we couldn’t do as well before – and access enough genes to create many new pigeonpea varieties that will effectively help improve the food security and livelihoods of resource-poor communities.”

Pigeonpea breeders are now able to use markers for genetic mapping and trait identification, marker-assisted selection, marker-assisted recurrent selection and genomic selection. These techniques, Rajeev says, “considerably cut breeding time by doing away with several cropping cycles. This means new varieties reach dryland areas of Africa and Asia more quickly, thus improving and increasing the sustainability of food production systems in these regions.”

Several genes, unique to pigeonpea, were also identified for drought tolerance by the project. Future research may find ways of transferring these genes to other legumes in the same family – such as soybean, cowpea and common bean – helping these crops also become more drought tolerant. This would be a significant asset in view of the increasingly drier climates in these crops’ production areas.

“We cannot help but agree with William Dar, Director General of ICRISAT, who observed that the ‘mapping of the pigeonpea genome is a breakthrough that could not have come at a better time’,” says Jean-Marcel.


East African farmers inspect pigeonpea at flowering time.

Securing income-generating groundnut crops in Africa

Groundnut, otherwise known as peanut, is one of ICRISAT’s mandate crops. Groundnuts provide a key source of nutrition for Africa’s farming families and have the potential to sustain a strong African export industry in future.

“The groundnut is one of the most important income-generating crops for my country and other countries in East Africa,” says Patrick Okori, who is a groundnut breeder and Principal Scientist with ICRISAT in Malawi and who was GCP’s Product Delivery Coordinator for groundnuts.

“It’s like a small bank for many smallholder farmers, one that can be easily converted into cash, fetching the highest prices,” he says

It is the same in West Africa, according to groundnut breeder Issa Faye from the Institut Sénégalais de Recherches Agricoles (ISRA), who has been involved in GCP since 2008. “It’s very important for Senegal,” he says. “It’s the most important cash crop here – a big source of revenue for farmers around the country. Senegal is one of the largest exporters of groundnut in West Africa.”

In April 2014, the genomes of the groundnut’s two wild ancestral parents were successfully sequenced by the International Peanut Genome Initiative – a multinational group of crop geneticists, including those from ICRISAT, who had been working in collaboration for several years.

The sequencing work has given breeders access to 96 percent of all groundnut genes and provided the molecular map needed to breed drought-tolerant and disease-resistant higher yielding varieties, faster.

Photo: S Sridharan/ICRISAT

Drying groundnut harvest, Mozambique.

“The wild relatives of a number of crops contain genetic stocks that hold the most promise to overcome drought and disease,” says Vincent Vadez, ICRISAT Principal Scientist and groundnut research leader for GCP’s Legumes Research Initiative. And for groundnut, these stocks have already had a major impact in generating the genetic tools that are key to making more rapid and efficient progress in crop science

Chair of GCP’s Consortium Committee, David Hoisington – formerly ICRISAT’s Director of Research and now Senior Research Scientist and Program Director at the University of Georgia – says the sequencing could be a huge step forward for boosting agriculture in developing countries.

“Researchers and plant breeders now have much better tools available to breed more productive and more resilient groundnut varieties, with improved yields and better nutrition,” he says.

These resilient varieties should be available to farmers across Africa within a few years.

Supporting key crops in West Africa

Photo: N Palmer/CIAT

Harvested pearl millet and sorghum in Ghana.

With a focus on the semi-arid tropics, ICRISAT has been working closely with partners for 30 years to improve rainfed farming systems in West Africa. One sorghum researcher who has been working on the ground with local partners in Mali since 1998 is Eva Weltzien-Rattunde. She is an ICRISAT Principal Scientist in sorghum breeding and genetic resources, based in Mali, and was Principal Investigator for GCP’s Sorghum Research Initiative.

Eva and her team collaborated with local researchers at Mali’s Institut d’Economie Rurale (IER) and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development) on a project to test a novel molecular-breeding approach: backcross nested association mapping (BCNAM). Eva says this method has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

In another project, under GCP’s Comparative Genomics Research Initiative, Eva and her team are using molecular markers developed through the RI to select for aluminium-tolerant and phosphorus-efficient varieties and validating their performance in field trials across 29 environments in three countries in West Africa.

“Low phosphorus availability is a key problem for farmers on the coast of West Africa, and breeding phosphorus-efficient crops to cope with these conditions has been a main objective of ICRISAT in West Africa for some time,” says Eva.

“We’ve had good results in terms of field trials. We have at least 20 lines we are field testing at the moment, which we selected from 1,100 lines that we tested under high and low phosphorous conditions.” Eva says that some of these lines could be released as new varieties as early as 2015.

Ibrahima Sissoko, a data curator working with Eva’s team at ICRISAT in Mali, also adds that the collaborations and involvement with GCP have increased his and other developing country partners’ capacity in data management and statistical analysis, as well as helping to expand their network. “I can get help from other members of my sorghum community,” he says.

In summing up, Eva says: “Overall, we feel the GCP partnerships are enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties that will help farmers and feed the ever-growing population in West Africa.”

Photo: A Paul-Bossuet/ICRISAT

Enjoying a tasty dish of sorghum.

Tom Hash, millet breeder and Principal Scientist at ICRISAT and GCP Principal Investigator for millet, shares Eva’s sentiments on GCP and the impact it is having in West Africa.

Between 2005 and 2007, GCP invested in genetic research for millet, which is the sixth most important cereal crop globally and a staple food (along with sorghum) in Burkina Faso, Chad, Eritrea, Mali, Niger, northern Nigeria, Senegal and Sudan.

With financial support from GCP, and drawing on lessons learnt from parallel GCP genetic research, including in sorghum and chickpea, ICRISAT was able to mine its considerable pearl millet genetic resources for desirable traits.

Hari D Upadhyaya, Principal Scientist and Head of Genebank at ICRISAT in India, led this task to develop and genotype a ‘composite collection’ of pearl millet. The team created a selection that strategically reduced the 21,594 accessions in the gene bank down to just 1,021. This collection includes lines developed at ICRISAT and material from other sources, with a range of valuable traits including tolerance to drought, heat and soil salinity and resistance to blast, downy mildew, ergot, rust and smut, and even resistance to multiple diseases.

The team then used molecular markers to fingerprint the DNA of plants grown from the collection.

“GCP supported collaboration with CIRAD, and our pearl millet breeding teams learnt how to do marker-based genetic diversity analysis,” says Tom. “This work, combined with the genomic resources work, did make some significant contributions to pearl millet research.”

Over 100 new varieties of pearl millet have recently been developed and released in Africa by the African Centre for Crop Improvement in South Africa, another developing country partner of ICRISAT and GCP. Tom says the initial genetic research was pivotal to this happening.

Photo: N Palmer/CIAT

A Ghanaian farmer examines his pearl millet harvest.

From poverty to prosperity through partnerships

Patrick Okori says that GCP has enabled his organisation to make a much stronger contribution to the quality of science.

“Prior to GCP, ICRISAT was already one of the big investors in legume research, because that was its mandate. The arrival of GCP, however, expanded the number of partners that ICRISAT had, both locally and globally, through the resources, strategic meetings and partnership arrangements that GCP provided as a broad platform for engaging in genomic research and the life sciences.”

This expansion of ICRISAT, facilitated by GCP, also enabled researchers from across the world and in diverse fields to interact in ways they had never had the opportunity to before, says Vincent Vadez.

“GCP has allowed me to make contact with people working on other legumes, for example,” he says. “It has allowed us to test hypotheses in other related crops, and we’ve generated quite a bit of good science from that.”

Pooran Gaur has had a similar experience with his chickpea research at ICRISAT.

“GCP provided the first opportunity for us to work with the bean and cowpea groups, learning from each other. That cross-learning from other crops really helped us. You learn many things working together, and I think we have developed a good relationship, a good community for legumes now.”

This community environment has made the best use of an unusual variety of skills, knowledge and resources, agrees Rajeev Varshney.

“It brought together people from all kinds of scientific disciplines – from genomics, bioinformatics, biology, molecular biology and so on,” he says. “Such a pooling of complementary expertise and resources made great achievements possible.”

More links

Photo: A Paul-Bossuet/ICRISAT

Man and beast team up to transport chickpeas in Ethiopia.


Sep 282015


Photo: Agência BrasíliaSorghum is already a drought-hardy crop, and is a critical food source across Africa’s harsh, semi-arid regions where water-intensive crops simply cannot survive. Now, as rainfall patterns become increasingly erratic and variable worldwide, scientists warn of the need to improve sorghum’s broad adaptability to drought.

Crop researchers across the world are now on the verge of doing just that. Through support from the CGIAR Generation Challenge Programme (GCP), advanced breeding methods are enhancing the capacity of African sorghum breeders to deliver more robust varieties that will help struggling farmers and feed millions of poor people across sub-Saharan Africa.


A farmer in her sorghum field in Tanzania.

Sorghum at home in Africa

From Sudanese savannah to the Sahara’s desert fringes, sorghum thrives in a diverse range of environments. First domesticated in East Africa some 6000 years ago, it is well adapted to hot, dry climates and low soil fertility, although still depends on receiving some rainfall to grow and is very sensitive to flooding.

In developed countries such as Australia, sorghum is grown almost exclusively to make feed for cattle, pigs and poultry, but in many African countries millions of poor rural people directly depend on the crop in their day-to-day lives.


A Malian woman and her child eating sorghum.

In countries like Mali sorghum is an important staple crop. It is eaten in many forms such as couscous or (a kind of thick porridge), it is used for making local beer, and its straw is a vital source of feed for livestock.

While the demand for, and total production of, sorghum has doubled in West Africa in the last 20 years, yields have generally remained low due to a number of causes, from drought and problematic soils, to pests and diseases.

“In Mali, for instance, the average grain yield for traditional varieties of sorghum has been less than one tonne per hectare,” says Eva Weltzein-Rattunde, Principal Scientist for Mali’s sorghum breeding programme at the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT).

In a continued quest to integrate ways to increase productivity, GCP launched its Sorghum Research Initiative (RI) in 2010. This aimed to investigate and apply the approaches by which genetics and molecular breeding could be used to improve sorghum yields through better adaptability, particularly in the drylands of West Africa where cropping areas are large and rainfall is becoming increasingly rare.

Kick starting the work was a GCP-funded collaboration between project Principal Investigator Niaba Témé, plant breeder at Mali’s Institut d’économie rurale (IER) and the RI’s Product Delivery Coordinator Jean-François Rami of the Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), France, with additional support from the Syngenta Foundation for Sustainable Agriculture in Switzerland.

The collaboration aimed to develop ways to improve sorghum’s productivity and adaptation in the Sudano-Sahelian zone, starting with Mali in West Africa, and expanding later across the continent to encompass Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Photo: F Noy/UN Photo

A farmer harvest sorghum in Sudan.

Sorghum gains from molecular research

Since 2008, with the help of CIRAD and Syngenta, Niaba and his team at IER have been learning how to use molecular markers to develop improved sorghum germplasm through identifying parental lines that are more tolerant and better adapted to the arid and volatile environments of Mali.

The two breeding methods used in the collaboration are known as marker-assisted recurrent selection (MARS) and backcross nested association mapping (BCNAM).


Photo: N Palmer/CIAT“MARS identifies regions of the genome that control important traits,” explains Jean-François. “It uses molecular markers to explore more combinations in the plant populations, and thus increases breeding efficiency.”

Syngenta, he explains, became involved through its long experience in implementing MARS in maize.

“Syngenta advised the team on how to conduct MARS and ways we could avoid critical pitfalls,” he says. “They gave us access to using the software they have developed for the analysis of data, and this enabled us to start the programme immediately.”

With the help of the IER team, two bi-parental populations from elite local varieties were developed, targeting two different environments found in sorghum cropping areas in Mali. “We were then able to use molecular markers through MARS to identify and monitor key regions of the genome in consecutive breeding generations,” says Jean-François.

“When we have identified the genome regions on which to focus, we cross the progenies and monitor the resulting new progenies,” he says. “The improved varieties subsequently go to plant breeders in Mali’s national research program, which will later release varieties to farmers.”

Jean-François is pleased with the success of the MARS project so far. “The development of MARS addressed a large range of breeding targets for sorghum in Mali, including adaptation to the environment and grain productivity, as well as grain quality, plant morphology and response to diseases,” he says. “It proved to be efficient in elucidating the complex relationships between the large number of traits that the breeder has to deal with, and translating this into target genetic ideotypes that can be constructed using molecular markers.”

Jean-François says several MARS breeding lines have already shown superior and stable performance in farm testing as compared to current elite lines, and these will be available to breeders in Mali in 2015 to develop new varieties.


Eva Weltzein-Rattunde examines sorghum plants with farmers in Mali.


Like MARS, the BCNAM approach shows promise for being able to quickly gain improvements in sorghum yield and adaptability to drought, explains Niaba, who is Principal Investigator of the BCNAM project. BCNAM may be particularly effective, he says, in developing varieties that have the grain quality preferences of Malian farmers, as well as the drought tolerance that has until now been unavailable.

“BCNAM involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations,” he explains. “The benefit of this approach is it can lead to detecting elite varieties much faster.”

Eva and her team at ICRISAT have also been collaborating with researchers at IER and CIRAD on the BCNAM project. The approach, she says, has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project,” she says. “Overall, we feel the experience is enhancing our capacity here, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Indeed, during field testing in Mali, BCNAM lines derived from the elite parent variety Grinkan have produced more than twice the yields of Grinkan itself. As they are rolled out in the form of new varieties, the team anticipates that they will have a huge positive impact on farmers’ livelihoods.

Photo: E Weltzein-Rattunde/ICRISAT

Malian sorghum farmers.

Mali and Queensland similar problem, different soil

In Mali and the wider Sahel region within West Africa, cropping conditions are ideal for sorghum. The climate is harsh, with daily temperatures on the dry, sun-scorched lower plains rarely falling below 30°C. With no major river system, the threat of drought is ever-present, and communities are entirely dependent on the 500 millimetres of rain that falls during the July and August wet season.

“All the planting and harvesting is done during the rainy season,” says Niaba. “We have lakes that are fed by the rain, but when these lakes start to dry up farmers rely mostly on the moisture remaining in the soil.”

Over 17 thousand kilometres to the east of Mali, in north-eastern Australia’s dryland cropping region, situated mainly in the state of Queensland, sorghum is the main summer crop, and is considered a good rotational crop as it performs well under heat and moisture stress. The environment here is similar to Mali’s, with extreme drought a big problem.

Average yields for sorghum in Queensland are double those in Mali—around two tonnes per hectare—yet growers still consider them low, directly limited by the crop’s predominantly water-stressed production environment in Australia.

One of the differentiating factors is soil. “Queensland has a much deeper and more fertile soil compared to Mali, where the soil is shallow, with no mulch or organic matter,” says Niaba. “Also, there is no management at the farm level in Mali, so when rain comes, if the soil cannot take it, we lose it.”

Photo: Bart Sedgwick/Flickr (Creative Commons)

Sorghum in Queensland, Australia.

Making sorghum stay green, longer

Another key reason for the difference in yields between Queensland and Mali is that growers in Queensland are sowing a sorghum variety of with a genetic trait that makes it more tolerant to drought.

This trait is called ‘stay-green’, and over the last two decades it has proven valuable in increasing sorghum yields, using less water, in north-eastern Australia and the southern United States.

Stay-green allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought—that is, drought that occurs after the plant has flowered. This means the plants can keep growing and produce more grain in drier conditions.

“We’ve found that stay-green can improve yields by up to 30 percent in drought conditions with very little downside during a good year,” says Andrew Borrell from the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at the University of Queensland (UQ) in Australia.

“Plant breeders have known about stay-green for some 30 years,” he says. “They’d walk their fields and see that the leaves of certain plants would remain green while others didn’t. They knew it was correlated with high yield under drought conditions, but didn’t know why.”

Stay-green’s potential in Mali

With their almost 20 years working on understanding how stay-green works, Andrew and his colleagues at UQ were invited by GCP in 2012 to take part in the IER/CIRAD collaborative project, to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties and enriching Malian pre-breeding material for the trait.

A pivotal stage in this new alliance was a 12-month visit to Australia by Niaba and his IER colleague Sidi Coulibaly, to work with Andrew and his team to understand how stay-green drought resistance works in tall Malian sorghum varieties.

“African sorghum is very tall and sensitive to variation in day length,” explains Andrew. “We have been looking to investigate if the stay-green mechanism operates in tall African sorghums (around four metres tall) in the same way that it does in short Australian sorghum (one metre tall).”

Having just completed a series of experiments at the end of 2014, the UQ team consider their data as preliminary at this stage. “But it looks like we can get a correlation between stay-green and the size and yield of these Malian lines,” says Andrew. “We think it’s got great potential.”

Photo: S Sridharan/ICRISAT

Sorhum growing in Mozambique.

Sharing knowledge as well as germplasm

Eva Weltzein-Rattunde has played more of an on-the-ground capacity development role in Mali since accepting her position at ICRISAT in 1998. She says “the key challenges have been improving the infrastructure of the national research facilities [in Mali] to do the research as well as increasing the technical training for local agronomists and researchers.”


A Malian farmer harvests Sorghum.

A large part of GCP’s focus is building just such capacity among developing country partners to carry out crop research and breeding independently in future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

A key objective of the IER team’s Australian visit was to receive training in the methods for improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more,” says Niaba. This training complemented previous training Niaba and IER researchers had from CIRAD and ICRISAT through the MARS and BCNAM projects.

“We [CIRAD] have a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission,” says Jean-François. “We’ve hosted several IER students here in France and we are always interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding.”

Photo: Rita Willaert/Flickr (Creative Commons)

Harvested sorghum in Sudan.

Working together to implement MARS in the sorghum breeding program in Mali represented many operational challenges, Jean-François explains. “The approach requires a very tight integration of different and complementary skills, including a strong conventional breeding capacity, accurate breeders’ knowledge, efficient genotyping technologies, and skills for efficient genetic analyses,” he says.

Because of this requirement, he adds, there are very few reported experiences of the successful implementation of MARS.  It is also the reason why these kinds of projects would normally not be undertaken in a developing country like Mali, but for the support of GCP and the dedicated mentorship of Jean-François.

sorghum quote 2“GCP provided the perfect environment to develop the MARS approach,” says Jean-François. “It brought together people with complementary skills, developed the Integrated Breeding Platform (IPB), and provided tools and services to support the programme.”

In addition to developing capacity, Jean-François says one of the great successes of both the MARS and the BCNAM projects was how they brought together Mali’s sorghum research groups working at IER and ICRISAT in a common effort to develop new genetic resources for sorghum breeding.

“This work has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent populations that have been developed are analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François. “This community development is another major achievement of the Sorghum Research Initiative.” The major challenge, he adds, will be whether this community can be kept together beyond GCP.

Considering the numerous ‘non-GCP’ activities that have already been initiated in Africa as a result of the partnerships forged through GCP research, Jean-François sees a clear indication that these connections will endure well beyond GCP’s time frame.

GCP’s sunset is Mali’s sunrise

Photo: S Sridharan/ICRISAT

Sorghum at sunset in Mozambique.

Among the new activities Jean-François lists are both regional and national projects aimed at building on what has already been achieved through GCP and linking national partners together. These include the West African Agricultural Productivity Program (WAAPP), the West Africa Platform being launched by CIRAD as a continuation of the MARS innovation, and another MARS project in Senegal and Niger through the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet at Kansas State University.

“These are all activities which will help maintain the networks we’ve built,” Jean-François says. “I think it is very important that these networks of people with common objectives stick together.”

sorghum quoteFor Niaba, GCP provided the initial boost needed for these networks to emerge and thrive. “We had some contacts before, but we didn’t have the funds to really get into a collaboration. This has been made possible by GCP. Now we’re motivated and are making connections with other people on how we can continue working with the material we have developed.”

“I can’t talk enough of the positive stories from GCP,” he adds. “GCP initiated something, and the benefits for me and my country I cannot measure. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so important.”

More links


A sorghum farmer in her field in Tanzania.

Jun 022015
Photo: S Edmeades/IFPRI

A farmer transports bananas to market by bicycle in Uganda.

At whatever time of the day or night you are reading this, somewhere in the world there are sure to be farmers trekking many kilometres to take their bananas to local markets. These small-scale farmers produce almost 90 percent of the world’s bananas, and make up a significant portion of the 400 million people around the globe’s tropical girdle – Africa, Asia and Latin America – who rely on bananas for food and a source of income.

Bananas are often called the world’s most popular fruit, and global production in 2012 was almost 140 million tonnes. India is the largest producer, while South and Central American farmers supply the most to international supermarket shelves, exporting 80 percent of their bananas.

The importance of the banana as a food crop in tropical areas cannot be underestimated. More than a simple snack, plantain-type bananas in particular are a key component in savoury dishes. In Central and East African countries – like Cameroon, Gabon, Rwanda and Uganda – one person will eat an average of between 100 kg and 250 kg of banana each year. That equates to somewhere between 800 and 2000 average-sized bananas. In those four countries, bananas account for up to a quarter of people’s daily calorie intake.

Photo:  A Vezina/Bioversity International

A stallholder offers bananas for sale at a fruit market in Nairobi, Kenya.

Banana’s asexuality inhibits its resilience

Photo: G Stansbury/IFPRI

Bananas growing in Rwanda.

Banana propagates though asexual reproduction. This means that all the bananas of each variety are genetically identical, or nearly so, and therefore susceptible to the same diseases. Indeed, the world has already lost almost its entire banana crop once: before the 1950s, the Gros Michel cultivar dominated banana exports, but it was gradually wiped out in most regions by Panama disease, caused by the fungus Fusarium oxysporum. Furthermore, with reproduction being asexual, it is difficult to develop new, resistant varieties through conventional breeding.

At the turn of the twenty-first century, pests and diseases were once again becoming a real threat to global banana production. Little genetic research had been done on the fruit, and only a small portion of its genes had been used in breeding new varieties in its 7,000-year history as a cultivated crop.

“Several research groups had developed genetic markers for bananas [‘flags’ on the genome that can be linked to physical traits], but there was no coordination and only sketchy germplasm studies,” recalls Jean Christophe Glaszmann from CIRAD (Centre de coopération internationale en recherche agronomique pour le développement; Agricultural Research for Development) in France.

Photo: N Palmer/CIAT.

A plantain farmer walks through a plantation in Quindió, Colombia.

“It was not a priority,” says Jean Christophe, who was Subprogramme Leader for Genetic Diversity for the CGIAR Generation Challenge Programme (GCP), an international initiative established in 2004 to encourage the use of genetic diversity and advanced plant science to improve crops.

But between 2004 and 2012, under GCP, a wealth of research work was undertaken that culminated in the complete genetic sequencing of banana. It was a long process, says Jean Christophe, but the GCP-funded work on banana made a significant contribution to important results.

The extensive data on the genetics of banana are now available to scientists worldwide, who can use it to delve deeper into banana’s genes to breed varieties that can sustain the poorer populations in developing countries.

Once finally sequenced, the banana genome was published in one of the most prestigious scientific journals, Nature, in July 2012: “The reference Musa [banana and plantains] genome sequence represents a major advance in the quest to unravel the complex genetics of this vital crop, whose breeding is particularly challenging. Having access to the entire Musa gene repertoire is a key to identifying genes responsible for important agronomic characters, such as fruit quality and pest resistance.”

Filling and full of fuel, and with the major advantage that it fruits year-round, the banana is vital to food security in the tropics. Bananas are potassium-rich and supply people in developing countries with a major source of carbohydrates. They also provide vitamin A, niacin, vitamin B6, thiamine, riboflavin and folic acid.

Passionate people pooled for the work

Photo: UN Women Asia & the Pacific

A banana seller in Hanoi, Vietnam.

Plans to sequence the banana genome started taking shape in 2001 at Bioversity International (a CGIAR centre), where a group of scientists formed the Global Musa Genomics Consortium. At that time, the only plant whose genome had been sequenced was Arabidopsis thaliana (a small flowering plant related to cabbage and mustard, used as a model organism in plant science), with rice close behind.

CGIAR established GCP in 2004 “to tap into the rich genetic diversity of crops via a global network of partnerships and breeding programmes,” according to Hei Leung, who was instrumental to GCP’s foundation and a Subprogramme Leader for Comparative Genomics. (During its first phase GCP was organised by Subprogramme; these were later replaced by Research Themes and Research Initiatives.)

Hei acknowledges that banana was ‘somewhat on the fringe’ of GCP’s main focus on improving drought tolerance in crops. However, he says, it was still relevant for GCP to support the emergence of improved genetics for banana.

The work we did in genetic diversity is about future generations. We wanted a programme that is pro-poor, meaning that the majority of the people in the world are depending on [the crop].

Photo: Adebayo/IITA

A typical banana and plantain market at Ikire in Osun State, Nigeria.

“Drought tolerance is a good candidate because drought affects a lot of poor areas, but you really cannot just take one trait as pro-poor. We had a highly motivated group of researchers willing to devote their efforts to Musa,” says Hei.

“Nicolas Roux at Bioversity International was a passionate advocate for the partnership,” notes Hei. “The GCP community offered a framework for novel interactions among banana-related actors and players working on other crops, such as rice.”

Nicolas concurs on the potential for a little banana research to have great value: “Even though banana is among the most important basic food crops for 400 million people, and 100 million tonnes are grown annually on over 10 million hectares in 120 countries, it’s still under-researched and underfunded.”

The resultant research team was led by Japan’s National Institute of Agrobiological Sciences, which had vast experience in rice genome sequencing.

“So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly,” says Hei.

To advance genetics, you first need the intelligence

Photo: IITA

Banana bunches on an experimental plot at IITA.

Three global research agencies were charged with working together to develop a reference set for banana: Bioversity International, CIRAD, and the International Institute of Tropical Agriculture (IITA).

Creating a reference set – a careful, tactical selection representing the genetic diversity of a crop – is an invaluable first step in enabling scientists to work together to develop more ‘intelligent’ genetic data.

“Initially, we put together a community of institutions that have collections [of banana germplasm],” explains Jean Christophe. “And then we put together these initial materials that we sample in order to develop representative subsamples – this is called a ‘composite’ set because it comes from different institutions.

“Then we genotype this composite collection, and the genotyping allows us to understand how all this [genetic material] is structured. Based on how it is structured, we can re sample a smaller representation – this is what becomes a reference set.”

So, in the case of crops with an extensive genetic resource base, such as rice, there may be more than 100,000 different plant samples, or accessions, that are reduced to a few thousand. For banana, which has a smaller genetic resource base, a few hundred thousand accessions can be reduced to a few dozen.

“A couple of hundred accessions or fewer become manageable for plant breeders or crop specialists. And we want this to serve as a reference, shared among people, so that everybody works on the same reference material,” says Jean Christophe.

“If you work on the same reference material, you can compile information that is more intelligent – you can have the crop specialist who says ‘this is resistant; this is tolerant; this is susceptible’, and you can also have the biochemist, you can have the physiologist; in the end, you can compile the information.”

“We analysed about 500 accessions and narrowed it down to 50,” says Jean Christophe. This reference collection is currently stored at the University of Leuven in Belgium.

The refined data collected on the banana reference set enabled the researchers to unravel the origin and genealogy of the most important dessert banana: the Cavendish, the cultivar subgroup that dominates banana exports worldwide. Thanks to the early GCP work, they were able to show that Cavendish bananas evolved from three markedly different subspecies.

Photo: C Sokunthea/World Bank

65-year-old Cambodian farmer, Khout Sorn, stands in front of his banana trees in Aphiwat Village, Tipo commune, Cambodia.

Malaysian wild subspecies fully sequenced

During these preliminary years of GCP-supported research on banana, the Programme funded several other smaller projects to consolidate genomic resources available for banana. Scientists developed libraries of artificial chromosomes that can be used in sequencing the DNA of banana, as well as genetic maps, which according to Jean Christophe are essential for improving the quality of the sequence.

These projects contributed to the full genome sequencing of a wild banana from Malaysia’s Pahang province in 2008. The ‘Pahang’ subspecies is one of the Cavendish variety’s three ancestors, and has also been shown to have had a role in the origin of many other banana cultivars, including those that are most important for food and economic security.

“GCP did not fund the sequence [of the Pahang banana], but it funded several things that made it possible to undertake full-scale sequencing,” Jean Christophe says. “It supported the development of particular resources and tools, and this made it possible for researchers to start the full-length sequencing.”

Photo: Asian Development Bank

A farmer at work on a banana plantation, Mindanao, the Philippines.

Breeders now need to set to work

The more that is known about the genes responsible for disease resistance and other desirable traits in banana, the more researchers will be able to help farmers in developing countries to improve their yields.

“The road remains long, but now we have a good understanding of genetic diversity,” says Jean Christophe. “We have done a range of studies aimed at unravelling the genes that could control sterility in the species.

“This is undoubtedly an inspiring challenge towards unlocking the genetic diversity in this crop.

“If we have more money in the future, we are going to sequence others of the subspecies so that we can have the full coverage of the current Cavendish genome. But that was a good start,” says Jean Christophe.

“What we have to do now is to create the right populations [of banana] in the field so that we can separate out the characteristics we want to breed for.”

The new intelligence on banana genetics has given breeders the material they need that will ultimately help 400 million people in the tropics sustain food supplies and livelihoods.

More links

Photo: N Palmer/CIAT

Bananas on the way to market in Kenya.

Mar 102015


Niaba Témé

Niaba Témé

“I can’t talk enough about the positive stories from the Generation Challenge Programme [GCP]. It initiated something new. I cannot measure its benefits for my country, for myself and for the sorghum-breeding and -producer communities. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so very important.”

Growing up in a farming community in Mali, on the southern edge of the Sahara Desert, plant breeder Niaba Témé knows the ups and downs of farming in the harsh, volatile semiarid regions of Africa.

“I used to love harvesting the millet and helping my mother with her groundnut crops,” he remembers fondly. “We grew other dryland crops too, like sorghum, cowpeas, Bambara nuts, sesame and dah.”

Niaba’s village of Yendouma-Sogol is one of many villages balanced along the edge of the Bandiagara escarpment – 150 kilometres of sandstone cliffs soaring hundreds of metres above the sandy plains below. The region is considered one of the most challenging places in the world to be a farmer. The climate is harsh, with the average daily temperature on the dry, sun-scorched plains rarely falling below 30°C and often exceeding 40°C during the hottest months of the year. With no major water source available for drinking, cropping and livestock husbandry, the threat of drought is ever-present here, as it is across much of Africa’s semiarid landscape.

While much of Mali’s irrigated agriculture relies on water from the River Niger, villages like Niaba’s depend entirely on the 500 or so millimetres of rainfall they receive during the July–August wet season. In the years that the rains didn’t come, Niaba’s family were unable to harvest anything at all. The repeated failure of his parents’ crops – coupled with a natural interest in science – inspired Niaba to embark on a career where he could help farming families like his own defend themselves against the risks of drought and extreme temperatures.

Photo: F Fiondella/CCAFS

Farmland in Diouna, Mali. Farmers here must contend with the Sahel’s dry, sandy soil and whatever limited rainfall the clouds bring to grow sorghum, millet, maize, and other crops.

Niaba’s journey

Niaba’s first big step along the research road was when he enrolled to study agronomy at Mali’s Institut Polytechnique Rural de Formation et de Recherche Appliquée in Eastern Bamako. Within two years he was offered a scholarship to study plant breeding at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderabad, India. He then worked at the Cinzana Research Station in Mali.

Niaba later spent 11 years in the USA completing a bachelor’s degree, master’s degree and finally PhD in agronomy at Texas Tech University before returning home to Mali in 2007, where he was soon recruited by Mali’s Institut d’Économie Rurale (IER) to take charge of their new biotechnology lab at the Centre Régional de Recherche Agronomique.

His journey with the Generation Challenge Programme began in 2010 when IER received GCP funding to carry out sorghum research in Africa as part of GCP’s Sorghum Research Initiative (RI) launched that same year. The project was a collaboration with ICRISAT and France’s Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development). With an initial focus on Mali, the project’s results would expand to encompass five other countries in the Sudano-Sahelian region: Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Sorghum the survivor gets even tougher


Hand milling of sorghum grains – an arduous task, mostly carried out by poor women in the drylands of Africa.

Drought-hardy crops such as sorghum are ideal for Mali’s conditions, where more water-intensive crops such as maize simply cannot survive. Millions of poor rural people across Africa depend on sorghum in their day-to-day lives: it is eaten in many forms, used to make alcoholic beverages and as animal fodder, and is converted into biofuel for cooking.

But even sorghum has its limits. While the demand for it has doubled in West Africa in the last 20 years, productivity has generally remained low, with an average yield of only one tonne per hectare for traditional varieties in Mali. This is mostly due to post-flowering drought, poor soils and farming conditions, and limited access to quality, high-yielding seed. As rainfall patterns become increasingly erratic and variable across the world, scientists warn of the need to improve sorghum’s broad adaptability to drought, to ensure future food security in Africa.

The GCP Sorghum RI, with Niaba’s help, aimed to support the development of new breeds of sorghum that could survive better on less water in drought-stricken parts of Africa. It sought to improve sorghum yield and quality for African farmers and, in turn, improve the livelihoods and food security of communities across sub-Saharan Africa.

In 2012, Niaba found himself travelling once again, this time to Australia with IER colleague Sidi B Coulibaly. They spent three weeks working alongside, and training with, Andrew Borrell and his sorghum research team at the Queensland Government Department of Agriculture, Fisheries and Forestry’s (DAFF) Hermitage Research Facility in Warwick.

“We have been collaborating with researchers at DAFF and The University of Queensland since 2009, to introduce what is called the ‘stay-green’ drought-resistant gene into our local sorghum varieties,” says Niaba.

Photo provided by A Borrell

Left to right: Niaba Témé with David Jordan (Australia), Sidi B Coulibaly (Mali) and Andrew Borrell (Australia), visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Niaba’s no longer green when it comes to using stay-green

Stay-green is a drought adaptation trait that allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought. This means the plants can keep growing and produce more grain in drier conditions. It has contributed significantly to an increase in sorghum yields, using less water, in north-eastern Australia and southern USA for the last two decades.

GCP’s stay-green project aimed to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties, enriching Malian pre-breeding material for the trait, and training African sorghum researchers, such as Niaba, in the methods of improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

Photo provided by E Weltzein-Rattunde

A sorghum farmer in Mali.

“In Australia we learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology,” says Niaba.

Learning to use molecular markers was particularly exciting, he says, “because molecular markers make it easier to see if the plant being bred has the gene related to drought tolerance, without having to go through the lengthy process of growing the plant to maturity and risk missing the trait through visual inspection.”

Niaba says the molecular training he received in Australia complemented previous training he had received through a collaborative GCP-funded project with Agropolis–CIRAD and Syngenta Foundation for Sustainable Agriculture, in which he learnt to use molecular markers to identify and monitor key regions of sorghum’s genome in consecutive breeding generations through a process called marker-assisted recurrent selection (MARS).

A large part of GCP’s focus is building such capacity among developing country partners to carry out crop research and breeding independently in the future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

“Our time in Australia was an intense but rewarding experience, more so for the fact that between the efforts of Australia and Mali, we have now developed new drought-tolerant crops which will enhance food security for my country,” says Niaba. “Similarly with the help of Agropolis–CIRAD and Syngenta, we are using molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali.”

Photo provided by A Borrell

Niaba (foreground) examining a sorghum panicle at trials in Mali in 2009.

Sorghum sunrise in Mali

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with Agropolis–CIRAD and collaborators in Africa at ICRISAT.

“In that project, we were trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba. “This involved using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

The approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought. The project developed 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents. The lines are now being validated in Mali.

Photo: P St-Jacques/DFATD-MAECD

Agronomists inspect a field of sorghum in Mali.

Niaba says such successful collaborations and capacity development opportunities have been made possible only through GCP support.

“We had some contacts before, but we didn’t have the funds or skills to really get into a collaboration. Now we’re motivated and are making connections with other people so we can continue working with the material we have developed.

“GCP’s time may be ending, but it very much represents a new day – a sunrise for the work we are doing with sorghum here in Mali.”

More links

Photo: N Palmer/CIAT

Sorghum for sale.

Mar 062015


Photo: IITA

A woman holds yam tubers in her hands in a market in West Africa.

Yam production in West Africa is plagued by unsustainable and suboptimal practices. Most farmers continue to grow local varieties that produce poor yields – and also lack aesthetic qualities that appeal to consumers, such as smooth skin and elegant tuber shape.

For a better future and a sustainable food supply, farmers need access to improved yam varieties that can tolerate changes in the climate and environment, as well as resist pests and diseases. Adopting new practices will also help farmers to increase their yields.

Yams play a key role in the food security, income generation and sociocultural life of at least 60 million people in Africa, where more than 95 percent of the world’s yam supply is produced. Worldwide, the tuber vegetable is grown and consumed across the tropics and subtropics of Asia, the Caribbean, the Pacific, and West and Central Africa. Such is the reliance on yams in parts of Africa that communities hold annual festivals to revere and celebrate the crop. The Igbo people in Nigeria hold a ‘new yam harvest’ festival every year at the end of the rainy season in August or September, when the yams are ready for harvest. People in both Nigeria and Ghana hold the ‘new yam eating’ festival, also known as the ‘hoot at hunger’ festival, which symbolises the end of a harvest and the beginning of the next cropping cycle.

Despite the importance of yams in West Africa, breeding efforts for improved varieties have been limited for a number of reasons. One is that local yam cultivars have different names in different communities, making germplasm management and research difficult. Another obstacle is the constraints on yam growth – the plants have a long growth cycle and are highly susceptible to pests and diseases, poor soil, weeds and drought.

Photo: J Haskins/Global Crop Diversity Trust

Dancers celebrate at a new yam festival in Nigeria.

Unique collaborations get yam research rolling

Photo: J Haskins/Global Crop Diversity Trust

A farmer in his yam field in Nigeria.

In 2004, the CGIAR Generation Challenge Programme (GCP) recognised the need to provide resource-poor farmers in West Africa with yam varieties that combine high yields with drought tolerance, pest and disease resistance, and good tuber quality. The Programme was created to advance plant genetics for 21 crops, with a view to improving the resources and capabilities of local breeders in developing countries. Yams were one of the crops that received funding for the first half of the 10-year Programme.

Robert Asiedu, Principal Investigator for GCP’s project assessing the genetic diversity of yams in West Africa, says the Programme improved yam breeding through its unique collaborations.

“The work was brief but the partnership arrangement was useful,” says Robert, who is Director of Research for Development at the International Institute of Tropical Agriculture (IITA), based in Nigeria.

Photo: IITA

A Nigerian farmer displays her healthy yam tubers.

His GCP-funded team included researchers from Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development) in France, the International Potato Center (CIP) headquartered in Peru, the International Centre for Tropical Agriculture (CIAT) based in Colombia, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) headquartered in India, Chile’s Instituto de Investigaciones Agropecuarias (INIA; Agricultural Research Institute), and the United States Department of Agriculture, plus experts in genome profiling and genetic analysis from Diversity Arrays Technology (DArT) in Australia. DArT provided high-throughput genotyping services that helped to profile yam’s genome.

Andrzej Kilian, DArT’s founder and director, says: “My company had a range of interactions with GCP, and I hope we had some positive impact on the outcomes.”

The researchers used molecular breeding tools – simple sequence repeat markers, or SSRs – to assess the genetic diversity of more than 500 yam accessions from Benin, DR Congo, Côte d’Ivoire, Equatorial Guinea, Gabon, Ghana, Nigeria, Sierra Leone and Togo. The assessment was a huge step forward in expanding the scientific knowledge of yam genetics, and ultimately in identifying suitable material for use in breeding programmes.

Photo: J Haskins/Global Crop Diversity Trust

Walking in yam fields.

IITA research scientist Maria Kolesnikova-Allen, also funded by GCP, says the yam work had two main objectives.

Photo: IITA

Yam vines twist up bamboo staking in a yam field.

“The primary focus of the first projects on yams involving molecular markers was to assess genetic diversity among yams originating from different West African countries and to find relationships between species. This information is important for future breeding and conservation efforts,” she says.

“Also, we were interested in confirming the use of molecular markers for analysis of yams and their potential use in breeding programmes.

“By confirming their usefulness in yam studies, we have offered a robust tool set for further studies on this crop.”

Photo: IITA

A trader displays clean and dried yam tubers at Bodija market, Ibadan, Nigeria.

As a result of the research, she says, “more knowledge and understanding has been achieved in terms of the genetic structure of yam populations in West and Central Africa, providing breeders with important knowledge for accessions selection to be included in breeding programmes.”

The genetic information that has been generated for yams will directly benefit countries in West Africa, according to Maria, “especially with IITA being positioned in the middle of the region and providing expert advice and dissemination of this information to local breeders and farmers.”

As part of her GCP-supported work, Maria supervised West African PhD students Jude Obidiegwu from Nigeria and Emmanuel Otoo from Ghana. Jude, a researcher at the National Root Crops Research Institute (NRCRI) in Nigeria, was responsible for GCP’s work on the genetic diversity of yams. His PhD assessed the genetic diversity of the West African yam collection.

African researchers carry GCP torch forward for yams

Jude is an example of how GCP focussed on fostering a base of experts on the ground in the countries where yams play an important role in people’s lives.

He was a participant in GCP’s Plant Genetic Diversity and Molecular Marker Assisted Breeding workshop held in Pretoria in June 2005. There he learned genomic DNA extraction methods, genetic and quantitative trait locus (QTL) mapping, development of core collections, and scientific proposal writing.

Photo: IITA

Woman counting money from the sales of yams at a yam market in Accra, Ghana.

“Our students at PhD level from Nigeria and Ghana were the main drivers of the projects at laboratory and field experiments level,” says Maria.

“Being involved in the projects allowed them to gain international exposure in their respective research fields and later advance their scientific career, becoming fully fledged yam scientists in their own right.

“If there be any hope of applying advanced genetics and genomics tools to the improvement of yam, it is researchers like Jude who will be the foot soldiers of that work in Africa.”

Photo: J Haskins/Global Crop Diversity Trust

A drummer adds his music to a new yam festival in Nigeria.

Maria feels there are strong foundations for further development of yam’s genetic resources after GCP’s sunset at the end of 2014.

“I would like to hope the future is bright,” she says. “As programmes for reducing hunger and poverty are multiplying and gaining momentum worldwide, I am sure the research on staple crops will be given much-needed financial support.

“I strongly believe in a partnership approach,” she maintains, drawing an analogy between GCP’s focus on crop genetics and the Human Genome Project that involved more than 300 partners collaborating between 1990 and 2003 to identify, map and sequence the human genome.

Robert agrees, forecasting that: “New projects will raise the capacity for yam breeding in West Africa by developing high-yielding and robust varieties of yams preferred by farmers and suited to market demands.”

Photo: IITA

A woman offers yam flour (known as elubo isu) for sale in Bodija market, Ibadan, Nigeria.

Mar 042015


Photo: IRRI

A woman harvests rice in Ifugao, The Philippines.

Plant geneticist Sigrid Heuer remembers very clearly entering the transgenic greenhouse in Manila to see her postdoctoral student holding up a rice plant with ‘monster’ roots.

“They were enormous,” she recalls. “This is when I knew we had the right gene. It confirmed years of work. That was our eureka moment.

So massive was the effect of that gene that I knew we had the right one.”

This genetic discovery – described in more detail a little later – is one of the shining lights of the 10-year-long CGIAR Generation Challenge Programme (GCP) established in 2004.

GCP-supported researchers aimed high: they wanted to contribute to food security in the developing world by using the latest advances in crop science and plant breeding.

And with the lives of half of the world’s population directly reliant on their own agriculture, there is a lot at stake. Land degradation, salinity, pollution and excessive fertiliser use are just some of the challenges.

Rice is one of the most critical crops worldwide

Amelia Henry, drought physiology group leader at the International Rice Research Institute (IRRI), explains why rice was such a critical crop for GCP research. She says rice is grown in a diverse set of environmental settings, often characterised by severe flooding, poor soils and disease.

Photo: A Barclay/IRRI

Cycling through rice fields in Odisha, India.

In Asia, 40 percent of rice is produced in rainfed systems with little or no water control or protection from floods and droughts – meaning rice plants are usually faced with too much or too little water, and rarely get just enough. In addition, 60 percent (29 million hectares) of the rainfed lowland rice is produced on poor and problem soils, including those that are naturally low in phosphorus.

Phosphorus deficiency and aluminium toxicity are two of the most widespread environmental causes of poor crop productivity in acidic soils, where high acid levels upset the balance of available nutrients. And drought makes these problems even worse.

Phosphorus is essential for growing crops. Its commercial use in fertilisers is due to the need to replace the phosphorus that plants have extracted from the soil as they grow. Soils lacking phosphorus are an especially big problem in Africa, and the continent is a major user of phosphate fertilisers. However, inappropriate use of fertilisers can, ironically, acidify soil further, since excess nitrogen fertiliser decreases soil pH.

Meanwhile, high levels of aluminium in soil cause damage to roots and impair crop growth, reducing their uptake both of nutrients like phosphorus and of water – making plants more vulnerable to drought. Aluminium toxicity is a major limitation on crop production for more than 30 percent of farmland in Southeast Asia and South America and approximately 20 percent in East Asia, sub-Saharan Africa and North America.

Rice is a staple for nearly half of the world’s seven billion people, and global consumption is rising. More than 90 percent of all the rice produced is consumed in Asia, where it is a staple for 2.4 billion people – a majority of the population. Outside Asia, rice consumption continues to rise steadily, with the fastest growth in sub-Saharan Africa, where people are eating 50 percent more rice than they were two decades ago. More than 90 percent of the world’s rice is produced by farmers in six countries: China, India, Indonesia, Bangladesh, Vietnam and Japan. China and India account for nearly half of that, with an output of more than 700 million tonnes.

The challenge today is to tap into the genetic codes of key crops such as rice and wheat to feed a growing global population. Science plays a crucial role in identifying genes for traits that help plants tolerate more difficult environmental conditions, and producing crop varieties that contain these genes.

Plant biologists are already developing new rice lines that produce higher yields in the face of reduced water, increasingly scant fertiliser as costs rise, and unproductive soils. However, ‘super’ crops are needed that can combine these qualities and withstand climate changes such as increasing temperatures and reduced rainfall in a century when the world’s population is estimated to reach nearly 10 billion people by 2050.

Bringing the best scientific minds to improve rice varieties

Ambitious in concept, the GCP research focussed on bringing together experts to work on these critical problems of rice production for some of the world’s poorest farmers.

The programme was rolled out in two phases that sought to explore the genetic diversity of key crops and use the most important genes for valuable traits, such as Sigrid’s discovery made in a rice variety that is tolerant of phosphorus-poor soils. Each phase involved dedicated teams in partner countries.

GCP: a two-act tale Phase I (2004–08) involved ‘discovery’ projects for 21 crops: beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum, wheat, bananas (and plantains), barley, coconuts, finger millet, foxtail millet, lentils, pearl millet, pigeonpeas, potatoes, soya beans, sweetpotatoes and yams. Phase II (2009–14) focussed on nine of these 21: beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

GCP Principal Investigator Hei Leung, from IRRI, says GCP is unique, one of kind: “I love it.” He says GCP has enabled rice researchers and breeders to embrace cutting-edge science through partnerships focussed on improving crop yields in areas previously deemed unproductive.

Hei says GCP wanted to target research during its second phase on those crops that most poor people depend upon. “We wanted to have a programme that is what we call ‘pro-poor’, meaning the majority of the world’s people depends on those crops,” he says.

Rice is the ‘chosen one’ of GCP’s cereal crop research and development, with the biggest slice of GCP’s research activities dedicated to this, the most widely consumed staple food.

It is crucial to increase rice supplies by applying research and development such as that carried out by GCP researchers over the past 10 years, Hei says.

For more on the relationship between GCP and IRRI – and an extra sprinkling of salt on your rice (fields) – see our Sunset Story ‘Rice research reaps a rich harvest of products, people and partners’.

Relying on rice’s small genome in the hunt for drought-tolerance genes

Researchers had been trying to map the genomes of key cereal crops for over two decades. Rice’s genome was mapped in 2004, just as GCP started.

Rice has a relatively small genome, one-sixth the size of the maize genome and 40 times smaller than the wheat genome. This makes it a useful ‘model’ crop for researchers to compare with other crops.

“People like to compare with rice because wheat and maize have very big genomes, and they don’t have the resources,” explains Hei.

After the rice genome had been sequenced, the next step was to focus down to a more detailed level: the individual genes that give rice plants traits such as drought tolerance. Identifying useful genes, and markers that act as genetic ‘tags’ to point them out, gives scientists an efficient way to choose which plants to use in breeding.

One of GCP’s Principal Investigators for rice was Marie-Noëlle Ndjiondjop, a senior molecular scientist with the Africa Rice Center.

“Rice is becoming a very important crop in Africa,” she says. “Production has been reduced by a lot of constraints, and drought is one of the most important constraints that we face in Africa.”

Meet Marie-Noëlle below (or on YouTube), in our series of Q&A videos on rice research in Africa.


Marie-Noëlle’s team recognised that drought tolerance was likely to be a complex trait in rice, involving many genes, due to the mix of physiological, genetic and environmental components that affect how well a plant can tolerate drought conditions. To help discover the rice varieties likely to have improved drought tolerance, Marie-Noëlle’s team used an innovative approach known as bi-parental marker-assisted recurrent selection (MARS).

“With such a complex trait, you really need to have all the tools and infrastructure necessary; through GCP we were able to buy the necessary equipment and put in the infrastructure needed to find and test the drought trait in rice lines.

“By using the MARS approach we identified the genetic regions associated with drought and are moving towards developing new rice lines that the African breeder and farmer will be using in the next decade to grow crops that are better able to withstand drought conditions.”

Likewise, Amelia Henry’s IRRI team also developed drought-tolerant lines, particularly for drought-prone areas of South Asia. She says many of the promising deep-rooted or generally drought-tolerant varieties identified in the early decades after IRRI’s foundation in 1960 are still used today as ‘drought donors’.

“Since the strength of our project was the compilation of results from many different sites, this work couldn’t have been done without the GCP partners,” she says. “They taught me a lot about how rice grows in different countries and what problems rice farmers face.”

Hei agrees that GCP partnerships have been crucial, including in the successful breeding of rice with drought tolerance: “They’re getting a 1.5-tonne rice yield advantage under water stress. I mean, that’s unheard of! This is a crop that needs water.”

Photo: IRRI

A rice farmer in Rwanda.

But the researchers could not rest with just one of rice’s problems solved.

Hei says GCP’s initial focus on drought was a good one but then, “I remember saying, ‘We cannot just go for drought. Rice, like all crops, needs packages of traits’.”

He knows that drought is just one problem facing rice farmers, noting “this broadened our research portfolio to include seeking to breed rice varieties with traits of tolerance to aluminium toxicity, salt and poor soils.”

The scope widens: phosphorus-hungry rice and a huge success

Sigrid Heuer was in The Philippines working for IRRI when she became involved in the ground-breaking phosphorus-uptake project for rice.

She took over the project being headed by Matthias Wissuwa. Much earlier, Matthias had noted that Kasalath – a traditional northern Indian rice variety that grew successfully in low-phosphorus soil – must contain advantageous genes. His postdoctoral supervisor, Noriharu Ae, thought that longer roots were likely to be the secret to some rice varieties being able to tolerate phosphorus-deficient soils.

Matthias, now a senior scientist in the Crop, Livestock and Environment Division at the Japan International Research Center for Agricultural Sciences (JIRCAS), says that for a long time he was not sure if it was just long roots: “It was a real chicken-and-egg scenario – does strong phosphorus uptake spur root growth, or is it the other way around?”

Photo: IRRI

Screening for phosphorus-efficient rice, able to make the best of low levels of available phosphorus, on an IRRI experimental plot in The Philippines. Some types of rice have visibly done much better than others.

Sigrid Heuer used her background in molecular breeding to take up the challenge with GCP to find the genes responsible for the Kasalath variety’s long roots.

“I spent years looking for the gene,” Sigrid says. “It was like trying to find a needle in a haystack; the genomic region where the gene is located is very complex.

“We had little biogenomics support at the time and I had three jobs and two kids; I was spending all my nights trying to find this gene.”

Photo: IRRI

Sigrid Heuer in the field at IRRI.

But one day, Sigrid’s postdoctoral student Rico Gamuyao excitedly called her downstairs to the transgenic greenhouses. “Rico had used transgenic plants to see whether this gene had any effect. He was digging out plants from experimental pods.”

Sigrid says that moment in the Manila labs was the turning point for the project’s researchers.

Matthias’ team had previously identified a genomic region, or locus, named Pup1 (‘phosphorus uptake 1’) that was linked to phosphorus uptake in lines of traditional rice growing in poor soils. However, its functional mechanism remained elusive until the breakthrough GCP-funded project sequenced the locus, showing the presence of a Pup1-specific protein kinase gene, which was named PSTOL1 (‘phosphorus starvation tolerance 1’). The discovery was reported in the prestigious scientific journal Nature on 23 August 2012 and picked up by media around the world.

The gene instructs the plant to grow larger and longer roots, increasing its surface area – which Sigrid compares to having a bigger sponge to absorb more water and nutrients in the soil.

“Plants growing longer roots have more uptake of phosphorus – and PSTOL1 is responsible for this.

“GCP was always there, supporting us and giving us confidence, even when we weren’t sure we were going to succeed,” she recalls. “They really wanted us to succeed, so, financially and from a motivational point of view, this gave us more enthusiasm.”

She adds, jokingly, “With so many people having expectations about the project, it was better not to disappoint.”

For some insight straight from the source, listen to Matthias in our podcosts below. In these two bitesized chunks of wisdom he discusses the importance of phosphorus deficiency and of incorporating PSTOL1 into national breeding programmes; his work in Africa and the possibility of uncovering an African ‘Pup2; what the PSTOL1 discovery has meant for him; and the essential contribution of international partnerships and GCP’s support.

Photo: IRRI

Members of the IRRI PSTOL1, phosphorus uptake research team chat in the field in 2012. From left to right they are are: Sigrid Heuer, Cheryl Dalid, Rico Gamuyao, Matthias Wissuwa and Joong Hyoun Chin.

Phosphorus-uptake gene not all it seemed – an imposter?

But PSTOL1 was definitely not what it seemed. “It was identified under phosphorus-deficient conditions and the original screen was set up for that,” says Sigrid.

Researchers eventually discovered that Pup1 and the PSTOL1 gene within it were not really all about phosphorus at all: “It turns out it is actually a root-growth gene, which just happens to enhance uptake of phosphorus and other nutrients such as nitrogen and potassium.

“The result is big root growth and maintenance of that growth under stress. If you have improved root growth, there is more access to soil resources, as a plant can explore more soil area with more root fingers.”

Her team showed that overexpression of PSTOL1 gene significantly improves grain yield in varieties growing in phosphorus-deficient soil – by up to 60 percent compared to rice varieties that did not have the gene.

In field tests in Indonesia and The Philippines, rice with the PSTOL1 gene produced about 20 percent more grain than rice without the gene. This is important in countries where rice is grown in poor soils.

Photo: T Saputro/CIFOR

A farmer harvests rice in South Sulawesi, Indonesia.

Sigrid, now based in Adelaide at the Australian Centre for Plant Functional Genomics, says the introduction of the new gene into locally adapted rice varieties in different locations across Asia and Africa is expected to boost productivity under low-phosphorus conditions.

“The ultimate measure for these kinds of projects is whether a gene works in different environments. I think we have a lot of evidence that says it does,” she says.

The discovery of PSTOL1 promises to improve the food security of rice farmers on phosphorus-deficient land though assisting them to grow more rice and earn more.

Titbits of further research successes: aluminium tolerance and MAGIC genes

Drought, low-phosphorus soils, aluminium toxicity, diseases, acid soils, climate change… the list seems never-ending for challenges to growing rice. Apart from the successes with drought and phosphorus that GCP scientists achieved, there was to be much more in the works from other GCP researchers.

During GCP Phase I, a team led by Leon Kochian of Cornell University, USA, with colleagues at the Brazilian Corporation of Agricultural Research (EMBRAPA), JIRCAS and Moi University, Kenya, successfully identified and cloned a major sorghum aluminium-tolerance gene.

In Phase II, they worked towards breeding aluminium-tolerant sorghum lines for sub-Saharan Africa, as well as applying what they learnt to discover similar genes in rice and maize.

Hei Leung says GCP leaves a lasting legacy in the development of multiparent advanced generation intercross (MAGIC) populations. These help breeders to identify valuable genes, and from among the populations they can also select lines to use in breeding that have favourable traits, such as being tolerant to environmental stresses, having an ability to grow well in poor soils or being able to produce better quality grain.

“MAGIC populations will leave behind a very good resource towards improving different crop species,” says Hei. “I’m sure that they will expand on their own.”

GCP funded the development of four different MAGIC populations for rice, including both indica and japonica types. And the idea of developing MAGIC populations has spread to other crops, including chickpeas, cowpeas and sorghum.

For more on MAGIC see our Sunset Story ‘Rice research reaps a rich harvest of products, people and partners’.

Photo: IRRI

A farmer harvests rice in Nepal.

Meeting the challenges and delivering outcomes to farmers

But with success come the frustrations of getting there, according to Nourollah Ahmadi, GCP Product Delivery Coordinator for rice across Africa. “This is because things are not always going as well as you want.”

Nourollah, from Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development), says sometimes he felt overwhelmed coordinating GCP’s rice projects because “the challenges were perhaps too big.”

Project Delivery Coordinators monitor projects first-hand, conducting on-site visits, advising project leaders and partners and helping them implement delivery plans.

“One of the problems was the overall level of basic education of people who were involved in the project,” Nourollah says.

Photo: L Hartless/ACDI VOCA/USAID

Rice cultivation in Mali is on the rise.

His work with GCP has opened up new prospects for some of the poorest farmers in the world: “For five years, I have been coordinating one of the rice initiatives implemented by the Africa Rice Center and involving three African countries.” These are Burkina Faso, Mali and Nigeria.

He says GCP has brought much-needed expertise and technical skills to countries which can now use genetic insights to produce improved crops tolerant of drought conditions and poor soils and resistant to diseases. Using new molecular-breeding techniques has provided a more effective way to move forward, still firmly focussed on helping the world’s poorest farmers achieve food security.

“We don’t change direction, we change tools – sometimes you have a bicycle, sometimes you have a car,” Nourollah says.

Hei agrees there have been challenges: “It’s been a bumpy road to get to this point. But the whole concept of getting all the national partners doing genetic resource characterisation is a very good one.

Right now they are enabled; they are not scared about the technology. They can apply it.”

Sigrid says applied research is judged on two scales: “One is the publications and science you’re doing. The other is whether the work has any impact in the field, whether it works in the field. Bringing these two together is sometimes a challenge.”

GCP has managed to meet both challenges. New crop varieties have been released to farmers, and more than 450 scientifically reviewed papers have been published since 2004.

Building on the rice success story and leaving a lasting legacy

The work that GCP-supported researchers have done for rice is also being used in other crops. For example, researchers used comparative genomics to determine if genes the same as or similar to those found in rice are present and operating in the same manner in sorghum and maize.

The GCP team found sorghum and maize varieties that contained genes, similar to rice’s PSTOL1, that also confer tolerance of phosphorus-deficient soil with an enhanced root system. They were then able to develop markers to help breeders in Brazil and Africa identify phosphorus-efficient lines.

Making the most of comparative genomics Over the last 20 years, genetic researchers all over the world have been mapping the genomes of various crops. A genome is the total of all genes that make up the genetic code of an individual. Genome maps are now being used by geneticists and plant breeders to identify similarities and differences between the genes of different crop species. This process is termed comparative genomics and was an important tool for GCP during its second phase (2008–2014).

The knowledge that GCP-supported rice researchers have generated is shared through communities of practice, through websites, publications, research meetings and the Integrated Breeding Platform.

As Amelia Henry notes, GCP’s achievements will be defined by “the spirit of dedication to openness with research data, results and germplasm and giving credit and support to partners in developing countries.” The work in rice in many ways exemplifies GCP’s collaborative approach, commitment to capacity building and deeply held belief that together we can go so much further in helping farmers.

Unlocking genetic diversity in crops for the resource-poor was at the heart of GCP’s mission, which in 2003 promised ‘a new, unique public platform for accessing and developing new genetic resources using new molecular technologies and traditional means’.

Certainly for poor rice farmers in Asia and Africa, the work that GCP has supported in applying the latest molecular-breeding techniques will lead to rice varieties that will help them produce better crops on poor soils in a changing climate.

Photo: A Erlangga/CIFOR

Rice farmers in Indonesia.

More links